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ABSTRACT

As medical science today is making impacts on every aspect regarding healthcare,

neurology also shares the same motive for parenting every possibility of the safe detec-

tion and examination of the threatening diseases like brain tumor. A principal problem

in brain tumor-related diagnosis, monitoring and treatment is the assessment of the tu-

mor threat level and growth. Automatic segmentation is attractive in this context, as it

grants us a faster approach and potentially more accurate description of tumor param-

eters. In this paper, we have proposed a semantic segmentation technique to 3D MRI

images based on popular U-net architecture which is a Fully Convolutional Network

(FCN) and robust algorithm. Our presented network is evaluated on Multimodal Brain

Tumor Image Segmentation (BRATS 2015) datasets, which contains 274 people’s brain

MRI images. We have used soft dice loss function to subsist with class disparities and

augmented the data to prevent overfitting. Our implemented CNN architecture for de-

tection is validated by obtaining 74.30% accuracy on the classification between normal

and tumor affected MRI images as well as 69.25% accuracy on differentiating between

high-grade glioma (HGG) & low-grade glioma (LGG) affected patients’ MRI images.

Cross-validation of tumor segmentation has also displayed that our model architecture

can get promising segmentation efficiently than other popular architectures with a dice

score of 0.79 for the whole tumor.
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Chapter 1

Introduction

Brain tumor is the most dangerous and vulnerable disease of the time. Medical science is

approaching with every perspective for the variable and constant result for this issue. As the

law of nature, the tumor especially the ones inflected in brains do not follow any perpetual

rules that’s why identifying them is consolidated.

Human body is created with many types of cells. Each type of cell has a unique function.

When a cell loses control over its growth, they divide frequently without any order. The

cells forming a mass of tissue which is extra is called a tumor. Brain tumors are created by

abnormal and uncontrolled cell division in the brain that is the deed of the brain. Generally,

if the growth of this mass tissue becomes more than 50%, then the patient may not be able

to recover or might say incurable. Hence, detection of a brain tumor at its early stage with

its proper diagnosis is very important. For the identification of the tumor, there are tests

like CT and MRI.

The threat level depends on a combination of factors like the type of tumor, its location,

its size and its state of development. Brain tumors are divided into two parts, cancerous

(malignant) or non-cancerous (benign). Benign brain tumors are low grade. They are non-

cancerous brain tumors that grow slowly and push aside normal tissue but do not spread

on the surrounding normal tissue. They are homogeneous, separated, well defined and are

known as non- metastatic tumors because they do not form any secondary tumor. Whereas,

malignant brain tumors are cancerous brain tumors, which grow rapidly and invade the sur-

rounding normal tissue. They are heterogeneous, not well defined, grow in a disorganized

manner and are known as metastatic tumors because they initiate the growth of similar tu-

mors in distant organs. Malignant brain tumors or cancerous brain tumors can be counted

as the most dangerous and deadly diseases.

Previously, the process was doctor operated, expensive and the percentage of redemption

was low. Even the semi automated procedures lacked the efficiency and valid scheme.

For this reason, Magnetic resonance imaging (MRI) has become a widely-used method of
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high-quality medical imaging, especially in brain imaging where MRI’s soft tissue contrast

and non invasiveness are clear advantages. An important use of MRI data is tracking the

size of the brain tumor as it responds (or does not) to treatment. Therefore, this is an auto-

matic and reliable element for segmenting tumor.

The major investigations in developed countries demonstrate that the number of people who

develop brain tumors and departed this life is not short in number. That’s why functioning

a better approach to detect brain tumors consummately is our target.

1.1 Motivation

Around 250,000 people are fighting with primary brain tumor globally and of all primary

CNS (Central Nervous System) tumors 85% to 90% transform into brain tumors. This is the

10th leading cause of death for women. The 5-year survival rate for people with cancerous

brain or CNS tumors is 34% for men and 36% for women [1]. Overlooking these recent

statistics, this paper is formed to work for the automated brain tumor detection with MRI.

So that, the medical expense will be lessened as well as the method will be prevailing to

people because of the availability and time complexity.

Our whole personality, movement, higher cognitive process is controlled by our brain. Sev-

eral symptoms can be located due to brain tumors for example, patients face an unantici-

pated personality change such as confusion, anxiety or mood swings, memory difficulties,

communication difficulties, depression etc. Sight problems are faced by 28% of patient

where they complained to acquiesce facial palsy/ dry eyes, visual field loss, double vision

(diplopia), sensitivity to light (photophobia), double vision (diplopia), abnormal eye move-

ments, aphasia (language and speech problems). Physically almost every patient has to

adapt a solute feeling of fatigue which is the most common side effect of brain tumor. Up to

60% of patients will conversance at least one seizure. Children who has faced this vicious

disease might have a learning problem [2]. Due to the natural reaction of diagnosis and

treatment, most of the people have to undergo this kind of problems but not everyone faces

this kind of personality or physical change that would be classed as problematic.

Magnetic resonance imaging (MRI) is a noninvasive method that is used for creating three

dimensional (3D) tomographic images of the human body. For the detection of tumors,

lesions, and other abnormalities in soft tissues, such as the brain MRI is most often used.

Clinically, radiologists qualitatively analyze films produced by MRI scanners.

Formerly, the treatment process was primer and manual where the doctors would have to

construct a dreadful operation based on their prior knowledge. Not only the process was

expensive, but also the successive rate was quite low. As the problem is sensitive enough

where the subject was referred to the brain later, it was determined to call out modern pro-

cedures to deal with the detection of tumor.
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Recently, computer-aided techniques have been investigated in a great number for analyz-

ing and visualizing magnetic resonance (MR) images. Many researchers have researched

on detecting and quantifying abnormalities in the brain. For this reason, identifying the

tumor in MR images of the brain is an important step in this process. Another focused step

for computer-aided analysis is data quality and image quality assurance. Most of the MR

images contain unwanted intensity variations due to imperfections in MRI scanners. The

accuracy of automated analysis can improve to remove or reduce these kinds of variations

and for these reasons we are motivated to endeavor in this field.

Even with these new age methodologies, the accuracy level of splotch the brain tumors are

not that much prominent. The main reason behind this might be that, the biomedical na-

ture doesn’t follow any certain or practical rule. Most of the patient effectuate a uniquely

positioned and catalyzed tumor. Even if the network can successively detect the tumor, to

classify it requires a lot more exertion. It can be easily assumed that even a trained machine

can’t be completely convicted with this. That’s when the deep neural network came in hand

as the machine is trained with similar data and examined over multiple times. The network

can explore prior knowledge and make a decision. Earlier the networks weren’t that much

impeccable but with time strong and efficient algorithms have been generated and the dif-

ferent techniques and approaches were invoked and thus the validation has been escalated.

While these advanced neural networks, support vector machine (SVM) and rectifier classi-

fication are being used in this field the performance rate is not that up to the mark till now.

The precision and delicacy are not top notches compared to current technology. With these

subjects in mind, we are intended to work with this topic to make a well-designed network

that can generate an immaculate outcome.

1.2 Objective

CNS, the central nervous control system is formed with the brain and spinal column by

which all the main functions are being controlled in our cellular system, and these func-

tions include thought, speech and body movements. It can be accounted that a person’s

operations, motions, performances can be affected if a tumor grows in the CNS. Brain tu-

mors are initially segmented into two ways, Primary tumors are those whose initial positions

are in the brain then they spread in other sections of the body. Primary tumors are further

classified into two parts, high grade, and low grade. A high-grade tumor grows rapidly, on

the other hand, the low-grade generally grow slowly but it can also be converted into a high

grade. If the tumor starts in another part of the body, such as lung, colon or breast and then

they spread into the brain they are called secondary brain tumors or brain metastases that

are also cancerous. There are many types of primary brain tumors but our main concern is

gliomas. The gliomas are assumed to glean from glial cells or glial precursor cells. They are
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assigned to grade by which their behavior is measured, low-grade glioma (LGG) (grades

I and II) and high-grade glioma (grade III anaplastic glioma and grade IV glioblastoma).

The low-grade glioma has a dormant growth and insinuates of white matter with subtle

neuro-cognitive deficit and seizures but in some cases, it can adapt some regional changes

and be transferred into a more malignant variant. High-grade glioma may present from

the beginning (primary) glioblastoma or as a transformation of a lower-grade tumor (e.g.

secondary glioblastoma). Gliomas typically grow within white matter and exhibit irregular

growth patterns along white matter fibers, infiltrating the surrounding brain. Thus, they

present devious boundaries that may be visually intangible on conventional MRI images.

A fixed measurement of the tumor boundary and appraisal of tumor size is needed for pa-

tient management in terms of planning the accurate treatment and monitoring treatment

response.

For diagnosing brain tumors, medical imaging techniques such as Computed Tomography

(CT), Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) are

used. CT exercises the radioactive rays to penetrate the human body, and the imaging is

based on the different characteristics reflecting the rays of different tissues. PET, injects

with radioactive drugs to the human body, and the drugs flow to all the cells, tissues and

organs with the blood in the whole body. In the MRI process, there are neither instruments

inserted nor any medication injected into the human body. The process is considered safer

as the human body is not facing any radiation damage. In addition, MRI has high resolu-

tion and accurate positioning of soft tissues and is sensitive to the characteristics of diseases,

that’s why it is easy to detect the tumor and tumor progress modeling process and treatment

module. Besides, the MRI image produces more information about the given medical im-

age than the CT or ultrasound image. It also states detailed facts about brain structure and

anomaly detection in brain tissue. Unlike from foregoing time it is a smooth way to use the

automated methods for brain tumor detect and type cataloging using brain MRI images by

just scanning and freighting medical images to the computer, thus it is especially suitable

for the diagnosis of brain diseases.

Our primary concern was to classify the gliomas but later we changed our approach and

focused on segmenting the tumor rather than classifying because before applying any treat-

ment module, it is important to segment the tumor in order to protect healthy tissues while

damaging and destroying tumor cells during the therapy. Brain tumor segmentation in-

volves diagnosing, delineating and separating tumor tissues, such as active cells, necrotic

core, and edema from normal brain tissues including Gray Matter (GM), White Matter (WM)

and Cerebrospinal Fluid (CSF).

An image is split into regions with connate properties such as color, brightness, texture,

grey level and contrast and this process is called segmentation. In medical segmentation

the scheme is to Identify Region of Interest (ROI), examine anatomical structure i.e. spot

tumor, scratch other irregular characters, expedient tissue volume to expedient growth of
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tumor (also reduce in size of tumor with treatment), innovate a premium plan for treatment

prior to radiation therapy in radiation dose calculation. Segmentation of medical images is

challenging due to their complex nature, poor image contrast, artifacts that result in missing

or diffuse tissue boundaries and rarely have any simple linear feature. Due to the presence

of artifacts, intensity inhomogeneity, partial volume effect and closeness in the gray level of

different soft tissue the result of segmentation can be affected. With appropriate filtering

technique (noise remove, low contrast features brightening, detecting the non-sharp edge),

proper image restoration approach (motion artifacts) and lastly by applying the requisite

algorithm for measuring partial volume and intensity inhomogeneity the MRI images can

be evolved.

Previously, a number of MRI images has to go through the manual annotation and segmen-

tation where the radiologist slices the image in multiple parts, detect the tumor and deter-

mine the classification. The decision will have to encounter a large intra and inter-rater

variability which makes the process more time-consuming. However, to evaluate the results

of semi-automatic and fully automatic methods this manual segmentations are vividly used

till now, functionally known as ground truth. Later in the Semi-automatic methods, the

process became a little handier as it required less manual interaction. Although there were

certain methods to ensue. Initialization, to define the region of interest (ROI), measure

the approximate tumor region for which the algorithm will work. Pre-processing, to adjust

the measurements of input images. In addition, these algorithms can also supersede if in

response they are fed right adjustments. Users can also modify and repeat the process if the

result meets deficiency.

In recent times, Neural Networks (NN) and Support Vector Machine (SVM) is the usually

dominant methods for their good enactment. However freshly, Deep Learning (DL) mod-

els established a gripping trend in machine learning as the subterranean architecture can

efficiently represent complex relationships without needing a large number of nodes like in

the superficial architectures e.g. K-Nearest Neighbor (KNN) and Support Vector Machine

(SVM). Consequently, they grew quickly to become the most advanced level to the health

informatics areas, for example, medical image analysis, medical informatics, and bioinfor-

matics. The implementation and usage of a neural network are paradigmatic of the human

brain. Vector quantization, approximation, data clustering, pattern matching, optimization

functions, and classification techniques are the important countenance for brain tumor de-

tection and they are done by the neural network. Based on their interconnections three types

of neural networks are feedback, feedforward, and recurrent network. The Feed Forward

Neural network is further classified into a single layer network and multilayer network. In

the single layer network, the hidden layer is not present. But it contains only the input and

output layer. However, the multilayer exists of the input layer, hidden layer, and output

layer. The closed-loop based feedback network is called a recurrent network. In the nor-

mal neural network, images are not scalable. But in convolution neural network, images
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are scalable (i.e) it will take 3D input volume to 3D output volume (length, width, height).

The Convolution Neural Network (CNN) consists of an input layer, convolution layer, Rec-

tified Linear Unit (ReLU) layer, pooling layer, and fully connected layer. In the convolution

layer, the given input image is separated into various small regions. Element-wise activation

function is prosecuted in ReLU layer. Pooling layer is usually optional. However, the pooling

layer is mainly used for downsampling. In the final layer (i.e) fully connected layer is used

to generate the class score or label score value based on the probability in-between 0 to 1.

Training and testing are two periods for the CNN based brain tumor classification. Multiple

labels are issued for different categories. In the training phase, preprocessing, feature exac-

tion and classification with Loss function is performed to make a prediction model. In the

preprocessing image resizing is applied to change the size of the image. The brain image

dataset is normally taken from various sources. If the training emerges from the starting

layer, it has to train the entire layer up to ending layer hence time consumption is higher

which will strike the performance.

To avoid this kind of problem, in our proposed method, for the detection part, we want to

feature the maps with a particular dimension in the convolutional layer. With a finical num-

ber of convolutional layers, the activation function, ReLU will be used for input and sigmoid

function for the output. Max pooling will be there for dimension reduction as well as for the

collective feedbacks flattening part will have to be passed down. Later in the full connection

layer, the input and output layer will be determined to connect. Further, as binary entropy,

a loss function will be applied.

The convolution architecture that has accustomed in this paper for segmentation is called

3D U-Net. This architecture was initially preferred on small datasets as it generates larger

features even from the smaller datasets. Later it was improved in Olaf et al’s [3] where

they have replaced the pooling layer with upsampling operators. This particular operation

has increased the resolution of the output. To localize the tumor the up samples are com-

bined with the high-resolution features from the contracting path. The foremost feature

of this method is that it allows the network to construct a symmetric path by propagating

the context information to higher resolution layers as it contains a large number of feature

channels, therefore yielding a u-shaped architecture.

Our method is designed to volunteer a threefold output, from the given image firstly it

will generate a difference between normal and abnormal brain image, it will distinguish

between tumor and non-tumor MRI images. Secondly, it can classify between high-grade

gliomas and low-grade gliomas. Thirdly, it will predict the result and compare the output

with the ground truth to expedient the accuracy. Here it has to be remembered that the

ground truth is the container of four images of that particular MRI based on the different

type of tumor (T1, T2, Flair & MPR), generated by the dataset which already consists the

exact verified result. In that way, the accuracy and dice score which we get is indubitable

and authentic. We contemplate that this method will reduce the time consumption by a
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great factor and help to detect the tumor with absolute accuracy.

Further in this book, Chapter 2 provides the literature description and related works accord-

ing to our study. Chapter 3 describes the necessary methods for our thesis study. Chapter 4

has the result of our work model which is described briefly. Lastly, in Chapter 5 & Chapter 6,

we have discussed about the limitation of our work and future plan with it & the conclusion.
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Chapter 2

Literature Review

The number of publications devoted to automated brain tumor segmentation has grown

exponentially in the last several decades. In the field of brain tumor segmentation & de-

tection, there are various types of methods and algorithms previously where some of them

used neural networks and some of them used other machine learning techniques. Other re-

lated papers have used morphological operations to solve this problem. But from the study,

we have able to find out that neural network based especially convolutional neural network

based methods work more efficiently than other types of methods regarding segmentation

problem. Based on various types of dataset whether it is a 3D or 2D the pre-processing

techniques differ from each other. To calculate the performance of these methods, many of

them used accuracy, sensitivity or dice score as performance measurement metrics. Among

all these methods, the state of the art methods dice score remains 85%.

As stated before that CNN works more efficiently than other methods in the case of brain

tumor segmentation. Sergio Pereira et al. [4] and Mohammad Havaei et al. [5] imple-

mented this neural network for their proposed architecture. Sergio Pereira et al. [4] have

used deep architectures with small convolutional kernels for the segmentation of gliomas in

MRI images. To correct the intensity of the same tissues to varying across the image N4ITK

method is used. They have also applied intensity normalization method on each sequence.

Erroneously classified tumors are dealt with volumetric constraints by removing clusters in

the segmentation obtained by the CNN that are smaller than a predefined threshold value.

The proposed architecture obtained the second position with a DSC score of 0.78, 0.65

and 0.75 in complete, core and enhanced regions, respectively in BRATS 2015 challenge

dataset. Similarly, Mohammad Havaei et al. [5] proposed a fully automatic brain tumor

segmentation method based on Deep Neural Networks (DNNs). They also had used CNN

which implements a novel two-pathway architecture that learns about the local details of

the brain as well as the larger context. They also employed a novel cascaded architecture as

an efficient and conceptually clean alternative to popular structured output methods. Both
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of the CNN based structured methods give higher performance metrics in case of dice score

as well as reduced the computational time to predict the segmented images of the tumors.

Tustison’s method takes 100 min to compute predictions per brain as reported in Menze et

al. (2014) [6], while the InputCascadeCNN takes 3 min, thanks to the fully convolutional

architecture and the GPU implementation, which is over 30 times faster. In Javeria Amin et

al. [7], Deep Neural Network (DNN) architecture is used to detect brain tumors, as this is

a very popular section of research from magnetic resonance images (MRI). This method is

used to segment the tumor. Also for classification, 7 layers are used including 03 convolu-

tional, 03 ReLU and a softmax layer. Multiple patches are made using CNN architecture so

that it could be used by DNN. Using 8 benchmark dataset containing BRATS 2012, 2013,

2014, 2015 and ISLES 2015 and 2017, results are verified by accuracy (ACC), sensitivity

(SE), specificity (SP), Dice Similarity Coefficient (DSC), precision, false positive rate (FPR),

true positive rate (TPR) and Jaccard similarity index (JSI). 99.8% DSC on Flair, 100% re-

sults on DWI, 98.0% on T2, 97.4% on T1 and 95.4% on T1-contrast modalities are achieved

as a result.

Twenty state-of-the-art tumor segmentation algorithms were implemented to a set of 65

multi-contrast MR scans of low and high-grade glioma patients in Menze et al. [6]. After

several numbers of evaluation of different types, it was published that no algorithms were

able to detect 100% of segmentation and different algorithms worked best for different sub-

regions of the brain. While the dice score of segmenting core and the active region is 70%

and 60% but on average 80% of the whole regions can be endowed by these algorithms.

In a similar fashion, Ali Isin et al. [8] presented reviews of the forefront methods based on

deep learning and a brief overview of traditional techniques. While the paper has concise

the traditional methods it also focused on the CNN (Convolutional Neural Network) and it

is one of the best based on high performance, excellence in complex features for both brain

tissue and tumor tissues directly from MRI images. Later the decision was made that fu-

ture improvements and modifications in CNN architectures and addition of complementary

information from other imaging modalities such as Positron Emission Tomography (PET),

Magnetic Resonance Spectroscopy (MRS) and Diffusion Tensor Imaging (DTI) may improve

the current methods also for better diagnosis and the development of clinically acceptable

automatic glioma segmentation methods it will eventually lead the path.

Biomedical images usually contain detailed patterns of the imaged object and brain tu-

mor is one of them. The edge of the object is variable and to cope with the segmenta-

tion for the objects with detailed patterns, Long et al. [9] proposed an architecture that

combined the high-level representation from deep decoding layers. The appearance rep-

resentation from shallow encoding layers produces detailed segmentation. This method

has demonstrated promising results on natural images [10] and can also be applied to the

biomedical images [11]. Ronneberger et al. [3] introduced the U-Net, which employed the
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skip-architecture, by solving the cell tracking problem. Hao Dong et al. [12] have narrated

down flaws of the traditional way of segmentation of brain tumors from MRI images and

using the BRATS-2015 which contains both LGG and HGG patient’s MRI as a dataset they

have formatted a new approach 2D fully convoluted segmentation network based on U-

Net architecture for overcoming those frailties. To boost the segmentation accuracy, data

is augmented using various techniques. Besides, soft dice based loss function has been ex-

ercised for adapting the unbalanced samples. The network has been implemented using

the TensorFlow and the TensorLayer libraries. Compared with manually delineated ground

truth, this fully automatic method has obtained promising results. Also compared to other

leading methods, this paper has achieved comparable results for delineating the complete

tumor regions, and superior segmentation for the core tumor regions. There are still some

boundaries of the current work like this segmentation method has been evaluated using a

five-fold cross-validation scheme also several parameters need to be carefully tuned in this

network. Moreover, the framework is less successful in segmenting enhancing tumor re-

gions of the LGG cohort but as a solution, they suggested to stack all the multimodal MRI

channels and performing joint training with HGG datasets. This method achieved 86% DSC

for the combined complete tumor segmentation.

Except for CNN, there are other neural networks had been employed in various other biomed-

ical image segmentation. El-Sayed A. El-Dahshan et al. [13] compared different segmen-

tation and classification techniques. By studying the other methods, they proposed a new

hybrid technique for computer-aided diagnosis of human brain tumors through MRI. The

median filter was used to remove the noise without disturbing the edges. They have used

feedback pulse-coupled neural network (FPCNN) which is a modification of PCNN for this

stage. To extract features from MRI, the discrete wavelet transform was used which gives

information about the signal both in frequency and time domains. The principal compo-

nent analysis was implemented to decrease the data dimensions while retaining as much

as possible of the variation present in the data set to process the data faster and effective.

The back-propagation neural network (BPNN) helped the proposed approach to classify MRI

into the set of target categories (normal or abnormal) based on feature selection parameters.

Confusion matrix which contains information about actual and predicted classifications was

used to evaluate the performance of the CAD system. This hybrid technique reached 99%

accuracy, 92.8% specificity as well as 100% sensitivity from the dataset they used. In Kailash

D.Kharat et al. [14], two Neural Network techniques for the classification of the magnetic

resonance human brain images are proposed. Using discrete wavelet transformation (DWT)

and principles component analysis (PCA) the features of MRI images were extracted and the

dimensions were reduced respectively. Feedforward artificial neural network (FF-ANN) and

the second classifier based on Back Propagation Neural Network (BP-ANN) was used for

classifying subjects as normal or abnormal MRI brain images.
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Detection and classification of brain tumor modified image segmentation techniques were

applied on MRI scan images by Dina Aboul Dahab et al. [15]. Gaussian smoothing filter

is used to remove noise from the images. The most edges are found out by the Canny al-

gorithm. A modified version of the conventional PNN method helps to classify the brain

tumor. 64 images were tested by their proposed system and got 100% accuracy when the

spread value is equal to 1. Similarly Pauline John [16] used PNN algorithm for segmenta-

tion. Wavelet, a powerful mathematical tool is used for feature extraction. The statistical

features from MR images are acquired by using Gray Level Co-occurrence Matrix (GLCM).

PNN method is used for implementing an automatic MR image classification of brain tumors

into normal, benign and malignant. The accuracy of classification is found to be nearly 100%

when the spread value is set to 1.

Clustering algorithms have always been popular in the case of image processing especially

on the detection of a contour. An advanced method of segmentation has been processed

down by Eman Abdel-Maksoud et al. [17]. In the paper, they have used the K-means clus-

tering technique integrated with the Fuzzy-C-means algorithm. Although the K-mean algo-

rithm can detect a brain tumor faster than Fuzzy C-means. Fuzzy C-means gives a more

detailed result of the brain tumor. But the original Fuzzy C-means algorithm has a weak-

ness of segmenting the image corrupted by noise, outliers, and other imaging artifacts.

That’s why their developed approach integrates the K-means clustering algorithm with the

Fuzzy C-means algorithm to detect brain tumor accurately and in minimal execution time.

The framework is divided into four parts, pre-processing (de-noising by the median filter

and skull removal by BSE (Brain Surface Extractor), clustering (integration of K-means and

Fuzzy C-means), extraction and contouring (thresholding and level set), and validation

stages. The method is implemented on three types of dataset, Digital Imaging and Com-

munications in Medicine (DICOM) data set with no ground truth, Brain Web data set and

BRATS database from Multimodal Brain Tumor Segmentation which is included of ground

truth. The results of this experiment clarified our hybrid clustering method (KIFCM) can

detect a tumor that cannot be detected by Fuzzy C-means with less execution time rather

than both FCM (Fuzzy C Means) and Expectation Maximization (EM). But it takes longer

time than K-means (KM) and Mean Shift (MS). In contrast, [18] of Matthew C. Clark et

al. built an automated system in which segment and level tumors of human brain MRI

images. The initial image segmentation is done by applying unsupervised clustering algo-

rithms. With an integrated knowledge-based technique containing system, these images are

processed. These MRIs are T1-weighted, proton density, and T2-weighted images. A total of

120 brain slices containing radiologist diagnosed glioblastoma-multiform tumor was there

for processing the system. In this system, three-volume data sets for training and thirteen

unseen volume data sets for the test are used. Results of ground truth are pretty well. Per

slice basis and tumor volume tracking, both are corresponded to ground truth.
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One of the popular method proposed by Stefan Bauer et al. [19] has also been a clustering

based algorithm. MRI images are need to be analyzed for studding brain tumor to gaining

knowledge because of the increasing number of patients. Automated methods like region

or edge-based method, classification and clustering method, segmentation and tumor de-

tection algorithm are implemented with different directions. These methods are applied

on standard clinical images protocol. Segmentation method results in reasonable compu-

tational time. Tumor detection algorithm detects the growth of tumor to develop a health

chart and pathologic patients.

Previously, machine algorithms like SVM, KNN, random forest classifier, etc. were used

before the implementation of neural network based methods in the field of brain tumor

detection and segmentation. B. Devkota et al. [20] approached for early-stage detection

of brain tumor and initially, it has followed the method of MSFPS abbreviated as Image

pre-processing has been done by using the median filter. Segmentation of the pre-processed

image using mathematical morphological operations, feature extraction and reduction (ex-

traction of first statistical features and textural features), Features reduction using princi-

pal component analysis, Classification using Support Vector Machines with GRB kernel and

lastly Evaluation of the classification. While they have followed all the methods of this par-

ticular process they have changed the segmentation process Spatial Fuzzy C-Means (SFCM)

by another method of high peak signal to noise ratio (PSNR). They have established a new

algorithm for segmentation and gathered the accuracy of 92% accuracy for detecting can-

cer which is higher than the current model and classifier has an accuracy of 86.6% and as

a limitation this proposed method does not classify into different stages as stage I, II, III, IV

of cancer, has not been tested up to the evaluation stage, to compare with the current best

solution and they have not been tested on a large set of data.

Stefan Bauer et al.’s [21] another paper on an automatic method has been proposed for

the segmentation of brain tissue using support vector machine classification. This classifica-

tion is based on hierarchical conditional random field regularization which is more effective

than other machine learning classifications. Initially, the images undergo a pre-processing

pipeline. First-order textures can be completed fast and easily from small patches around

each voxel in all for modalities. Classification is done using a soft margin SVM classifier

which is based on the LibSVM implementation. Regularization is done in two different

stages using a Conditional Random Field method. The gross tumor volume for intra-patient

regularized and inter-patient regularized are 0.84 and 0.77 respectively.

Discrete wavelet-based GA (generic algorithm) was implemented in [22] to detect the MRI

brain images. Following the process of the optimal or sub-optimal data partition, they have

implemented k-Means unsupervised clustering methods into Genetic Algorithms for guiding

the last Evolutionary Algorithm but as there was the problem of a non-trivial search because

of its intrinsic NP-complete nature. The paper solves using soft threshold DWT for enhance-
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ment and genetic algorithms for image segmentation. The developed method uses the GA,

to solve optimization problems with a large search space (label of each pixel of an image).

The developed method can also integrate some prior knowledge such as local ground truth

to work more efficiently. The system shows two types of result, first, it establishes that the

method achieved SNR value from 20 to 44 and secondly the segmentation accuracy was

increased from 82% to 97%.

A segmentation method in medical image analysis can be revolutionary and provide a better

diagnosis to the patients. In the year 2010, [23] was published which implemented a Hi-

erarchical self-organizing map (HSom) to segment images in the two-phase segmentation

method which was giving high performance in glioma diagnosis. In the first phase, the data

of MRI images are collected from parents’ database. The unwanted distortions are erased

in this phase. Then HSom is used to segment the image. By using real-life doctor given

dataset, results are achieved in different higher level pixels and quick execution time. The

Weight vector for Hsom is 3×3 is 14, 5×5 is 8, 7×7 is 15, 9×9 is 23 and 11×11 is 32. The

Execution time in Hsom of 3× 3 is 13.76, 5× 5 is 14.96, 7× 7 is 15.20, 9× 9 is 11.05 and

11× 11 is 11.53. This paper has vast information, knowledge, and data about brain tumor

detection.

In Sudipta Roy et al. [24], there are two segmentation processes- Threshold segmentation,

Water-shade segmentation which were used to detect the tumor, segment it and calculate

the area of the tumor. 6 sets of MRI imaged has been chosen for the operation and some

fundamental image enhancement and noise lessening procedure are applied after that the

mentioned algorithms were applied where first one for detecting the brain tumor where

the inputs MRI of brain image and Output is Tumor portion of the image and the second

algorithm is for Area Calculation where the Input is Tumor portion of the image and output

is area of the tumor.

By diagnosing the brain cancer using MRI images, the proposed system by Umit Ilhana et

al. [25] developed a unique segmentation technique. The dataset is collected from the Can-

cer Imaging Archive (TCIA). The proposed approach consists of the steps, pre-processing

(morphological operations, pixel subtraction), segmentation (threshold based segmenta-

tion, proposed segmentation), and filtering (median). It has a 94.28% recognition rate on

the images with a tumor and a 100% recognition rate on the ones without a tumor. The

overall success rate of this system is 96% but as the process is not entirely automated it has

several limitations and time-consuming issues. K. SUDHARANIa et al. [26] represented a

new approach for the automatic segmentation of tumors from T2 weighted MRI images. The

algorithm works in several steps- brightness adjustment, re-sampling, color plane extraction,

histogram processing, tumor measurements, thresholding, Fourier transform, lookup table,

advanced morphology, and practical analysis. It works better including ground truth images

and low-intensity regions that can be detected with this methodology. The result is shown
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in four firewalls: Sensitivity, Specificity, Accuracy and Similarity and they present a satisfac-

tory result.

Detection of the tumor region and to calculate its area based on morphological operation,

is another efficient way which was implemented by Madhumantee Naskar et al. [27]. The

image segmentation process is done by threshold segmentation methods. The median filter

is used to remove noise. The proposed method is time-consuming but generates errors.
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Chapter 3

Methodology

Methodology represents the working procedure of a thesis study. After research on the par-

ticular field, simplest and feasible methodology is chosen to apply on the dataset. Its a step

by step procedure.

In this chapter, the method or working process of our proposed system will be discussed,

how the research was conducted and the reason for following the methods. In our model,

convolutional neural network is used to detect the tumor and U-Net is used for segmenta-

tion.

The basic of the thesis is Deep Neural Network approach. Using Artificial Neural Network’s

part Convolutional Neural Network or CNN, layer architecture is created and used to give

decision of the presence of tumor. Also semantic segmentation is applied to segment the

tumor. A structure of semantic segmentation is U-Net Structure which is used in our model.

The MRI image of the input is being pre-processed and the feature is extracted which is used

to detect tumor using CNN.

For segmentation, input image is also pre-processed and pre-processed images are applied

to create blocks in U-net architecture. This architecture is created for segmenting the tumor.

3.1 Method of Tumor Detection

Tumor detection is one of the purpose of our thesis. Detecting tumor means giving the

decision of the existence of the tumor. Using our detection method, we can find out the

accuracy of our system. By training the data after pre-processing, system will be able to

give a prediction about tumor. It will also produce the prediction of having high grade

gliomas(HGG) and low grade gliomas(LGG).

To detect the tumor, Convolutional Neural Network is used after pre-processing to give the

prediction as CNN’s last layer is full connection layer which judge the features and produce
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the probability of having tumor or the tumor’s nature.

Start

Input MRI Images

Standardization

Image Augmentation

CNN Based Architecture

Output

Stop

Figure 3.1: Flowchart of Tumor Detection Method

3.1.1 Pre-processing

Pre-processing is an important part of image processing based system. A model’s working

ability directly depends on the pre-processing of the data. Pre-processing means process

the data before feeding it into the model as a set of data can contain much unnecessary

information which can only increase the delay of the output. Pre-processing of the data can

skip this information and extracts only the integral data. In other words, the raw data of the

source dataset is converted into clean data in more understandable way for the architecture.

Different model uses different types of data. Not all the model can support every dataset.

That’s why pre-processing is used.

MRI image is the dataset for our model. These images may have different intensity level,

scaling, and many distortions. For the feature to properly extract, we need feature scaling.

To scale the data, we used standardization. Also, image augmentation is needed for an

enriched dataset to be used.
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3.1.1.1 Feature Scaling

The dataset that is used in a model varies most of the time in values. Some data contains a

high value and some data contains a very low value. This variation can distort the result of

the process because the low values get neglected and only high magnitude values are used.

As the machine learning model uses Euclidean distance, these low value and high-value

distance is a huge problem which creates suppression.

There are Four widely used way for feature scaling which are,

1. Standardization

2. Mean Normalization

3. Min-Max Scaling

4. Unit Vector

To prevent the domination of any independent larger value over smaller value, we used

feature scaling in our model. MRI image has a different intensity level which needs to be

standardized. To fix this matter we have used standard scaling in mathematical term.

Standard scaling or standardization means we are putting our variable in the same range

on the same scale so that no variable is dominated by others. For each observation and

features, we withdraw the mean value of all the values of the feature and divide it by the

standard deviation. Our motive is to get comparing measurement of the values so that the

value of the feature weighted around 0 to 1 and no value is ignored. Standardization is

calculated by equation 3.1,

X stand =
x −mean(x)

standardDeviat ion(x)
(3.1)

In our model, Pixel of MRI ranges between 0 and 255. Here we can convert the different

pixel of the MRI images in the range between 0 and 1 by standardization and use it without

any problem. Because of the scaling the result of the model is more feasible.

3.1.1.2 Image Augmentation

Machine learning increases performance when a great amount of data is given to it. Data

Augmentation is a way to create new artificial data by modifying existing data. Data aug-

mentation improved the accuracy of Deep learning model as the training data is now in-

creased. Image augmentation is one of the data augmentation processes which is obtained

by transformation of the images.

Image augmentation is needed to prevent overfitting of the images. If it is not done then
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the result of the training set will be more accurate but the test set result will be much lower

accurate due to an overfit on the training set.

Which image is needed to augment is important as some data can’t give desire accuracy.

So the image augmentation is first applied in an isolated method and measure the accuracy

than in the main method.

To train a model with images we need huge data to correlate with each other. It might get

a chance to correlate with the training set but the problem happens when there comes new

data. Now we are working with 960 images, 768 is the training set. This is not enough data

to work with. To prevent this problem, data augmentation is used.

Data augmentation will create many batches and each batch will apply some random trans-

formations on a random selection of our image just like rotating, flipping, shifting or even

shearing. With this, we can get a lot more material for training. So this is a technique that

allows us to enrich our dataset, our training sets without adding more images.

In our method, we have used shear range, zoom range, and horizontal flip. Shear range

and zoom range both values are 0.2. We have flipped the image horizontally by 90 degrees.

This creates new data without adding any image and extends the dataset. The model will

get more data and trains itself with different possible data so that the testing dataset gives

more accuracy despite different data.

3.1.2 Convolutional Neural Network

CNN or Convolutional Neural Network is an advanced and feed-forward artificial neural

network of deep learning to analyze visual images. It is a basic part of deep learning where

the system learns more properly and gives different activities of the human brain. CNN

is a version of multilayer perceptron which is an architecture for supervised learning of a

classifier and gives the decision of a particular value whether it belongs to a class or not. But

perceptron is not regularized because of data over-fitting. CNN regularizes data by adding

wights to the loss function.

We have used Convolutional Neural Network to detect tumor from MRI images. Most of the

related work that we have studied do not uses CNN directly as this method is more complex.

CNN is a developed image classification algorithm than others. The traditional algorithm

mostly gives a handmade decision where CNN is a neural filtered algorithm that is self-

taught. CNN works more like a human brain with neuron. Traditional Neural Network

needs to reduce the resolution of the input image which is not ideal. This problem is reduced

by CNN as it works with layers and the neural layers are arranged in such way which gathers

the whole data ignoring the problem.

An input MRI is given. This MRI image is a multichannel image. So we worked with volume

of the image. The tumor is mentioned as the feature detector. After going through a number
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of layers, the CNN gives the decision. There are 11 layers in our convolutional network. In

these layers, we have used following concepts.

Figure 3.2: Convolution Neural Network

These 11 layers lead us in a probability of having a brain tumor and every layer works with

a new input, processed from the previous layer. The 3 main layers that we have used here

are,

1. Convolutional Layer

2. Pooling Layer

3. Full Connection Layer

3.1.2.1 Convolutional Layer

The convolutional layer is the main part or core part of Convolutional Neural Network. This

part of the CNN makes the input image converted into feature maps.

The convolution layer is applied to get a feature map from the MRI images. The feature map

is connected to the previous layer with the weight of the kernel. So, if we have 3×3 size of

filter, and depth of 3, then the convolution layer has 3× 3× 3 = 27 weight connected with

input volume. The convolution layer has fewer weights to train than the FC dense layer of

CNN. Which makes this layer easier.

The image of MRI is taken as input into the model. The feature detector slides the image to

detect the match. When the match is found, the value of that particular cell of feature map

is higher. We run the convolution operation to get a feature map with a higher possibility

of tumor. In our convolutional layer, we created 32 feature maps with the dimension 3×3.

The connectivity of each neuron in the input volume is discussed. The arrangement of the

neuron in output volume depends on three hyperparameter: depth, stride and zero padding.

This arrangement is called spatial arrangement.
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Figure 3.3: Convolution Layer

1. Depth: Depth of a output volume corresponds to the number of filters that we wanna

use. When an image is taken as input, the raw images’ color channel is the depth in

first convolutional layer. Next convolutional layers just uses the filters as their depth.

2. Stride: Stride should be specified as this is needed for the slide of the filter. When

stride is 1× 1 then the filter moves by 1 pixel at a time.

3. Zero-Padding: Sometimes this is needed to maintain the size of the input image. But

not always is used.

These spatial hyperparameter can give the formula for calculating the output volume or

spatial size of the volume in each convolutional layer,

• Input Size: D1 ×W1 ×H1, where D1 is the depth or color channel, W1 is the width of

the input and H1 is the height of the input

• HyperParameters:

– stride S

– receptive field size or filter size F

– the number of zero-padding P

– number of filters K

• Output Size: Produced volume size is D2 ×W2 ×H2 where,

– output depth D2 = K

– output width W2 = (W1 - F + 2P ) / S + 1

– output height H2 = (H1 - F + 2P ) / S + 1
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• weight per filter, F . F . D1 and total of (F . F . D1) . K weights with K biases

• In the output, the depth slice of d is the result of performing a valid convolution

operation of the d-th filter over the input with S stride, and then offset by d-th bias.

3.1.2.2 Activation Function

Basically activation function decides whether a neuron should work or not. It is really

important as it helps CNN to learn new data. This function activates the neuron related to

the information given with high weight and ignores the rest. Activation function could be

both linear and non-linear.

The activation function is very important as without it CNN works as a linear regression

model that cannot solve a complex problem. So many complicated works will not possible

if there is not any activation function. It also makes back-propagation possible as back-

propagation needs weight.

There are 4 types of activation function which are,

1. Sigmoid or Logistic Activation Function

2. Tanh or Hyperbolic Tangent Activation Function

3. ReLU (Rectified Linear Unit) Activation Function

4. Leaky ReLU

Activation fiction has an important role in our CNN. It decides which node of a layer is going

to work next. By activating the node of the layer it works. Among the popular activation

function, we used ReLU and Sigmoid Function.

Rectifier Function or ReLU:

Rectifier function increases non-linearity in our network. Images are highly non-linear. Dif-

ferent border, different color, different elements are which an image is made of. When we

run the convolution network and create a feature map, we risk that images real feature or

can create something linear. So we need to break the linearity. That’s why we need this

function.

ReLU gives max value for all positive values and zeroes for all negative values. For this

reason, ReLU is really simple as avoids complex values. In CNN, ReLU is most commonly

used. Equation used by ReLU function is,

∅(x) = max(x , 0) (3.2)

ReLU is most widely used over other activation functions because it doesn’t activate all the

neurons at a particular time. As we can see, ReLU gives zero when it is negative which
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makes the neuron inactivate and the network is more efficient.

We used the ReLU function in our input. It gives value 0 for all the negative values and 1

for otherwise. The curve of the function is,

Figure 3.4: Rectifier Linear Unit function

Sigmoid Function:

Sigmoid activation function is one of the commonly used activation function. It is an S-

shaped function that is non-linear. This function is continuously differentiable which makes

the graph of the function smooth. The equation of the function is,

f (x) =
1

1+ e−β x
(3.3)

Sigmoid curve represents that a small change in x of the curved region can make a huge

change in y. This feature of the function helps to classify a value in the proper class.

Sigmoid Function is used in our output to predict the probability of the data weight. Like

ReLU function, sigmoid also gives the value between 0 and 1. So we have used it in our

output layer as for the output layer we need binary function.

Figure 3.5: Sigmoid Function
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3.1.2.3 Pooling

Pooling is one of the building layers of Convolutional Neural Network. It reduces the spatial

size of the data and minimizes parameter and computational hazard in the network.

If the feature itself is a bit distorted, our neural network has to have some level of flexibility

to able to still find that feature and that is what pooling is all about. It pulls out the feature

that is needed from the image.

There are many types of pooling. Widely used pooling are,

1. MIN pooling

2. MAX pooling

3. SUM pooling

As max pooling is most commonly used in CNN, we have used 2 × 2 max pooling in our

model. This maximizes the feature of the data for further use.

The maximum numbers in the feature map represent where the closest similarity of a feature

is found. The point of pooling is to still be able to preserve the features and moreover,

account for their possible special or textural or other kinds of distorting. Reducing feature

helps us to process better.

Figure 3.6: Max Pooling

Figure 3.6 is the visual representation of pooling layer. So the pooling layer is,

• Input volume: D1×W1×H1, Where D1 is the depth, W1 and H1 is respectively width

and height
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• Two Parameter:

– spatial extent F

– stride S

• Output volume: D2 ×W2 ×H2 where,

– D2 = D1

– W2 = (W1 - F) / S + 1

– H2 = (H1 - F) / S + 1

3.1.2.4 Flattening

Flattening is the process that converts two-dimensional arrays into one-dimensional array

or single linear vector of a long chain. This step is needed in CNN as it can provide input

for the fully connected layer. In Convolutional Neural Network, convolution gives a series

of filters which is then max-pooled. This gives a grid-shaped two-dimensional array. A

fully connected layer doesn’t work with 2-dimensional input. Flattening basically breaks

the spatial structure of the data from a tridimensional tensor into a monodimensional tensor

which makes the structure understandable and unstructured as a fully connected layer takes

a vector as input. So flattening step is important in Convolutional Neural Network as it works

with complex data and that data is needed to be normalized.

The pooled feature image is being flattened into a column of a one-dimensional vector in

our model to get special information around the images’ pixel. Our MRI pooled image is

flattened for the fully connected layer to get the important feature for detection.

Figure 3.7: Flattening
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3.1.2.5 Full Connection

The main purpose of Neural Network is to predict more accurately by combining the fea-

tures in such a way that can give a more rational prediction. Fully connected layer provides

the feature combination that gives the result.

A whole Artificial Neural Network is added to Convolutional Neural Network. Full Connec-

tion layer is the hidden layer of CNN. The difference is that in ANN the hidden layers are

not connected with the input layer. But in CNN, Full Connection layer is fully connected to

the input layer or all the previous layers.

Fully connected layer is used to get the feature combined. This combination of features

makes the prediction more accurate. Full connection works with the entire input. When-

ever a data is needed to be classified, it’s features are stored in the neuron of the full con-

nection and it is connected with the output classes. When a feature is matched that neuron

is activated and the class gets more prediction value.

Figure 3.8: Full Connection

Full connection layer uses the output of the flattening layer as input and works with the

vector value. The weight of every feature is considered. The weight value of the feature

linked with the classes that we need to predict is observed to find out more relevant features

of the class. Practically what Full Connection does is,

• A certain feature of the MRI image is detected by the neuron of the fully connected

layer.

• The value of this feature is stored.

• This value is searched in both classes that we need to identify.
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• Both classes give the output weight that decides whether this image has a tumor or

not and which kind of tumor does the image has.

As input node of full connection or hidden layer, we need to take a value between the input

layer and the output layer. So we have used 128 nodes in the layer as input node and also

used ReLU as the activation function. But in the output layer, we used only 2 nodes and

sigmoid function because the output is in the binary value.

Figure 3.9: Full Connection for detecting HGG and LGG

Figure 3.9 is the visual representation of Full connection to detect whether the brain has

tumor or it is just a normal brain.

Figure 3.10: Full Connection for detecting Normal brain and Tumor Brain
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Figure 3.10 is the visual representation of Full connection to classify the state of the tumor

as High Grade Gliomas or Low Grade Gliomas.

3.1.2.6 Softmax Function

The result of the probability of being the particular class is coherence by Softmax Function.

Without this function the result we get from the network will not be added from both classes

and the final value 1 will not be produced. The equation of the function is,

f j(z) =
ez j

∑

k ezk
(3.4)

3.1.2.7 Cross-Entropy

Cross-Entropy is a measurement of the uncertainty of a result. This is commonly known as

loss function. It is what we want to minimize to maximize the performance of the network.

The less the loss function value is, the better the performance of the neural network is. In

CNN, the cost function is called loss function. To find the loss function, cross-entropy is

used.

The whole purpose of the loss function is to detect the goodness of a CNN model. Binary

cross-entropy is used when there are only 2 classes. For cross-entropy, the equation 3.5 is

used,

H(p, q) = −
∑

x

p(x) log q(x) (3.5)

Where q is the value of prediction (incorrect) and p is the probability of x. Cross-entropy

is always greater than entropy which is determined when there is optimal encoding. The

difference between this two-term gives a measurement of the distance between the predicted

value and probable value. When the cross-entropy is minimized, the predicted value comes

closer to the true value.

In our model, we have used binary cross-entropy as our model has binary classifier. The

equation we have used to measure the loss function in binary entropy is,

Hp(q) = −
1
N

N
∑

i=1

yi. log(p(yi)) + (1− yi). log(1− p(yi)) (3.6)

Where y is the level of 2 classes which is 0 or 1 and p is the predicted probability of the

feature being tumor effected at a certain point. The formula presents that, whenever y is

1, it adds log(p(y)) with the loss function and log probability of the predicted class being

tumor effected. In inverse, when log(1 - p(y)) is added, it refers to the other class with log

probability.
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3.1.3 Model Architecture of Convolutional Neural Network

In our custom convolutional model architecture, we have used 11 layers consisting 3 kinds

of layers. They are convolutional layer, pooling layer & finally fully connected layer. In all

convolutional layers, we have used 3× 3 kernel for each filter with the activation function

rectifier linear unit (ReLU) & for the pooling layer we have used 2 × 2 pool size with 2 ×
2 stride. For the output, we have used sigmoid function as the activation function. The

architecture is thoroughly described below.

• Layer 1: It’s a convolutional layer, described in the previous section, in which we have

used an input of 3× 64× 64 where 64× 64 are the size of the input image & 3 is the

number of color channels or depth. The number of filters used here is 32 as we want

to bring variation in the output but don’t want the time to be consumed. There is no

padding in the layer. Stride S = 1 and F = 3.

So from input volume, we get the output size by,

– output depth, D2 = Number of filters = 32

– output weight, W2 = (64 - 3 + 2 . 0 ) / 1 + 1 = 62 and

– output Height, H2 = (64 - 3 + 2 . 0 ) / 1 + 1 = 62

– weight per filter, 3 . 3 . 3 = 27 and total weight is 27 . 32

So the output volume is 32× 62× 62.

• Layer 2: Layer 2 is also a convolutional layer with an input of the previous layers

output which is 32× 62× 62. It also has the same number of filters like the previous

one and works exactly like layer 1 with same value of K, F, S and P.

So the output size or spatial arrangement for this layer is 32× 60× 60 by calculating

with,

– output depth, D2 = 32

– output weight, W2 = (62 - 3 + 2 . 0 ) / 1 + 1 = 60 and

– output Height, H2 = (62 - 3 + 2 . 0 ) / 1 + 1 = 60

– weight per filter, 3 . 3 . 32 = 288 and total weight is 288 . 32

Besides, there are 288 weight in the convolutional layer connected with input volume.

• Layer 3: Also convolutional layer like last 2 layers with same hyperparameter, but

input size of 32× 60× 60.

The output volume is obtain by using spatial arrangement’s formula which is 32×58×
58 and 288 weight are connected with input volume as like layer 2.
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• Layer 4: We have used a pooling layer to re-size the input & extract the important

pixel values. Max pooling technique is applied here. Input volume is 32 × 58 × 58.

For pooling we need the value for spatial extend, F and stride, S. We have used F = 2

and S = 2 which is very commonly used values.

So output size is calculated as,

– depth, D2 = 32

– Width, W2 = (58 - 2) / 2 + 1 = 29 and

– Height, H2 = (58 - 2) / 2 + 1 = 29

Which means, 32× 29× 29 is the output volume. This volume is then used for next

layer which is convolutional layer.

• Layer 5: It is a convolutional layer but this time the number of filters we have chosen

is 64 as the more the number of filter is, the more good the value will be. Input is the

output of max pooling layer which is 32 × 29 × 29. Hyperparameter of this layer is

like previous layers only with K = 64. So the output image is 64×27×27 calculating

from,

– output depth, D2 = 64

– output weight, W2 = (29 - 3 + 2 . 0 ) / 1 + 1 = 27 and

– output Height, H2 = (29 - 3 + 2 . 0 ) / 1 + 1 = 27

– weight per filter, 3 . 3 . 32 = 288 and total weight is 288 . 64

As the number of filter is 64, then the total weight connection will be different from

previous convolutional layers and weight per connection with input is 288.

• Layer 6: Another convolutional layer with input size of 64× 27× 27. Just like layer

5 with same parameter. So output arrangement is,

– output depth, D2 = 64

– output weight, W2 = (27 - 3 + 2 . 0 ) / 1 + 1 = 25 and

– output Height, H2 = (27 - 3 + 2 . 0 ) / 1 + 1 = 25

– weight per filter, 3 . 3 . 64 = 576 and total weight is 576 . 64

576 is the weight that is connected and new input or output for the next layer is

64× 25× 25

• Layer 7: Like previous convolutional layer, this layer also takes input of the last layer

and gives output of 64×23×23 and the weight connection is also same as last layer.

This is the last convolutional layer in our model.
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• Layer 8: Another pooling layer with 2×2 pool size with max pooling technique. It is

like layer 4 but here output volume is changed as it takes input of size 64× 23× 23.

F = 3 and S = 2 as for the next layer which is fully connected, overlapping pooling is

needed and this value refers to overlapping pooling. So the output size we get is,

– depth, D2 = 64

– Width, W2 = (23 - 3) / 2 + 1 = 11 and

– Height, H2 = (23 - 3) / 2 + 1 = 11

Calculated output size is 64× 11× 11. This volume is used by fully connected layer

as weight value.

• Layer 9: After getting the output from previous layer, we have converted it into input

of this layer by using flatten function to convert the matrix into one input layer for

full connected layer. For this reason, The full connection layer used input size of (64

. 11 . 11) = 7744. In this layer, full connected layer used 128 output dimension.

As we set the filter size exactly the size of input volume so we get the output (128 . 1

. 1) = 128.

• Layer 10: Same as layer 9 with the input of 128 and filter of 128. It gives output of

128.

• Layer 11: This is our output layer with an activation function as sigmoid function

turn it into 1 output neuron as a output of classification.

Table 3.1: Architecture of the CNN

Layers Type Filter Size Stride filters FC units Input

Layer 1 Convolutional Layer 3x3 1x1 32 - 3x64x64

Layer 2 Convolutional Layer 3x3 1x1 32 - 32x62x62

Layer 3 Convolutional Layer 3x3 1x1 32 - 32x60x60

Layer 4 Max-pooling 2x2 2x2 - - 32x58x58

Layer 5 Convolutional Layer 3x3 1x1 64 - 32x29x29

Layer 6 Convolutional Layer 3x3 1x1 64 - 64x27x27

Layer 7 Convolutional Layer 3x3 1x1 64 - 64x25x25

Layer 8 Max-pooling 2x2 2x2 - - 64x23x23

Layer 9 Full Connection - - - 128 7744

Layer 10 Full Connection - - - 128 128

Layer 11 Full Connection - - - 1 128
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3.2 Method of Tumor Segmentation

Segmentation of an image means segmenting the parts of the image with similar values.

Tumor segmentation is also one of the part of our research as this can separate the tumor

from the background of brain and show the location of that tumor.

For tumor segmentation we have created an architecture of U-net which is a part of seman-

tic segmentation. Before feeding the data into our system we have done pre-processing.

Processed data is used in U-net architecture and by using the fully convolutional network,

we can get our desire output of a segmented tumor image.

Start

Input MRI Images

Standardization

Image Re-sizing

Image Augmentation

3D U-net

Segmented Output Image

Stop

Figure 3.11: Flowchart of Tumor Segmentation Method
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3.2.1 Pre-processing

Biomedical images usually contain various important information like imaged objects. To

segment the object with detailed information, pre-processing is an essential section that

directly influences the model architecture. Our model architecture for brain tumor seg-

mentation was evaluated on BRATS 2015 dataset. But before segmentation, pre-processing

was executed on all the MRI images except for the ground truth images. The data were

pre-processed in a similar fashion which was done in the detection part. We used standard-

ization on the data which means each pixel values were subtracted by mean pixel values,

then divided by their standard deviation. So, the images were conditioned in a manner that

no lower values can be dominated by the higher values.

3.2.1.1 Re-sizing Image

Our network architecture, which is based on the U-net, needs re-sized images. First, we re-

size all 4 kinds of the 3D MRI images from 240× 240× 155 to a 32× 32× 32 uniform size.

After that, we concatenate all 4 kinds of images (T1, T2, T1c and Flair) into numerical arrays

for all 274 patients (220 HGG and 54 LGG). The MRI images were re-sized because if we

take the original size of the data it will be for the computer to feed the data into the network

as the converted data would be 782 GB which is very huge in terms of size. That’s why we

re-size the data into the uniform size of 32× 32× 32 to make our model more efficient in

terms of time consumption. By executing this step, the data reduce to 2.87 GB instead of

782 GB for training and the ground truth data becomes 712 MB for the corresponding data.

3.2.1.2 Image Augmentation

The image augmentation process creates more data from the original one which improves

the network performance. For segmenting our dataset we applied a set of data augmentation

techniques which is given in table 3.2.

Table 3.2: Applied Data Augmentation Methods

Methods Range
Flip horizontally 50% probability

Flip vertically 50% probability
Rotation ±20◦

Shift 10% on both horizontal and vertical direction
Shear 20% on horizontal direction
Zoom ±10%

Brightness γ= 0.8∼ 1.2
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Some easy and uncomplicated transformations such as rotation, zooming, flipping, shifting

were implemented which can produce in displacement to images. These operations will

not produce samples with extremely different shapes. Operations like shearing can deform

the shape of the tumor on horizontal direction. Generating training samples by varying

the brightness of the images in all aspects, can make data more effective for the model

network. There are some similar operations like we did in the detection part but to improve

the metrics of the U-net based model, all these augmentation methods are very essential.

3.2.2 Semantic Segmentation

We, humans, are extremely adept at watching any image and understanding the content

within it. It only takes a fraction of a second to analyze it. But it is completely different for

the machines. In the last couple of decades to make machines like computers smarter at

this kind of understanding various techniques are attempted and finally, the scientists might

achieve it by the use of deep learning methods. In computer vision, semantic segmentation

is getting popular day by day to improve the perception of the machines. It is the challeng-

ing task of partitioning the image into different regions. This makes it very easier to analyze

the input image. It is quite similar to grouping each pixel of the image based on specific

characteristics. Every pixel in the image belongs to a particular class and the similar pixels

are all assigned a single color which segments the image quite efficiently.

A lot of methods have been built to handle computer vision problems ranging from human-

computer interaction to robotics, medical science, and agriculture research and so on. But

semantic segmentation works like a miracle in this sort of problems in computer vision.

Specifically, the purpose of semantic segmentation is to label every pixel of a picture with

a corresponding class of what is being entitled with. In medical diagnosis, machines can

augment analysis performed by pathologists, greatly decreasing the time required to run

diagnostic tests.

Deep Learning has enabled the field of computer vision to next level rapidly in the last cou-

ple of decades. When one is using deep convolutional networks, the first few layers tend

to learn low-level concepts while deeper layers develop more high-level feature mappings.

To maintain efficiency, we typically need to increase the number of feature maps as we

get deeper into the network. This didn’t necessarily pose a problem for the task of image

classification, because for that task we only care about what the image contains. Thus, we

could alleviate the computational burden by periodically down-sampling our feature maps

through pooling or strided convolutions (ie. compressing the spatial resolution) without

concern.

One of the popular approaches for image segmentation models is to maintain an encoder/de-

coder structure where one have to down-sample the spatial resolution of the input, develop-
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ing lower-resolution feature mappings. It is learned to be highly efficient at discriminating

between classes, and the up-sample of the feature representations into a full-resolution seg-

mentation map.

The approach of using a "fully convolutional" network trained end-to-end and pixels-to-

pixels for image segmentation was introduced by Long et al. [9] in 2014. The paper’s writ-

ers propose adapting existing, well-structured image classification networks to serve as the

encoder module of the network. By appending a decoder module with transpose convolu-

tional layers to up-sample the coarse feature maps into a full-resolution segmentation map,

this network model was built.

By using this encoder-decoder model architecture, the U-net method was built which is

consisted of a series of convolution operation for each block in the model. Like common

convolutional network architectures, there exist several more advanced blocks that can be

substituted in for stacked convolutional layers. U-net architecture basically only takes im-

portant information from the images and make into smaller part in the encoding module

then padding with similar information and make large the smallest convoluted information

in decoding module. Lastly, the output image is the same size as the input image but with

significant changes which are semantic segmented images. That’s why we are using U-net

architecture as the main theme of our proposed method and a demonstration is given in

Figure 3.12 that how an image can be turned into a semantic segmented image (with U-net

architecture).

Figure 3.12: Semantic Segmentation

But most approaches of semantic segmentation, are only able to process 2D images while

most medical data used in clinical practice consists of 3D volumes. That’s why [10] pro-

posed a V-net model for 3D medical imaging to segment the images into more meaningful

data.
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3.2.3 3D U-net Based Deep Convolutional Networks

There are various levels of granularity in which the machines can gain an understanding of

images. For each of these levels, there is a problem stated in the computer vision. When it

comes to segment images into different regions, semantic segmentation works accordingly

which is a part of the computer vision domain. The input images were segmented in various

ways in semantic segmentation like- line segments, curve segments, circles, regions, struc-

tures, etc. Most of the time we need to process the images with filters which provide color

information, gradient information, etc. It helps computers in recognizing, understanding

what’s in the image in pixel level as well as most of the traditional methods cannot tell

different objects to the computers but it solves the problems quite nicely. Long et al. [9]
introduced an architecture that combined the deep level encoding and decoding. This net-

work demonstrated natural images and gave satisfactory results. By using this model, [11]
showed us it can also be applied in biomedical images. After that, the U-net was developed

by Olaf Ronneberger et al. [3], based on this same decoding and encoding architecture for

biomedical image segmentation. The model has two paths. The first path is the construc-

tion path which is also named as the encoder part that is used to capture the context in the

image. The encoder is just a traditional stack of convolution layers as well as max-pooling

layers. The second path is the symmetric expanding path which is also named as the de-

coder. It is implemented to enable precise localization using transposing convolution layers.

Thus it is an end-to-end FCN (fully convolutional network) which only have convolutional

layers and does not have any dense layer as it can accept an image of any size.

For those who are familiar with traditional convolutional neural network layers will be famil-

iar with the first part of U-net architecture denoted as contraction path of the architecture.

In contraction path (encoder), where we apply regular convolution layers and max-pooling

layers previously stated. In the Encoder, the size of the image gradually reduces while it

keeps gradually increasing the depth. This means the network learns the "WHAT" infor-

mation from each image, though it has lost the "WHERE" information from the images. In

expansion path (Decoder), where we apply transposed convolution layers along with reg-

ular convolution layers. The size of the image gradually increases and the depth gradually

decreases in the decoder part. Eventually, the decoder part recovers the "WHERE" informa-

tion (precise localization) by continuously applying up-sampling. To acquire better precise

locations, at each step of the expansion path we use skip connections by concatenating the

output of the transposed convolution layers with the feature detectors from the encoder

at the same level. After every concatenation, we once more apply two consecutive regular

convolutions so that the architecture can learn to congregate a more precise output. The

architecture is a symmetric U-shape and that is why it is named U-net architecture. Before

we dive into our model 3D U-net, it is important to understand the different operations that

are typically used in a fully convolutional network.
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3.2.3.1 Convolution Operation

It is the same as the convolution operation done in the detection part. The only difference

is that this convolution is done on 3D images. There are three inputs to this convolutional

operation.

1. Input Size: A 4D volume (input image) with the size of D1×H1×W1× C1, where D1

is the depth, H1 is the height, W1 is the width and C1 is the color channel of the input

image.

2. Filters: The dimensionality of the output space that means if there is ’k’ kernels or

filters the number of output will increase to ’k’ from unit input size.

3. Kernel Size: D2 × H2 ×W2, specifying the depth, height, and width of the 3D convo-

lution window.

Output Size: A 4D volume which is also called an output image or feature map with the

size of D3 ×H3 ×W3 × C3.

One important term used frequently is named as the Receptive field. This is nothing but

the region in the input volume that a particular filter is looking at which is also sometimes

called as the context. By putting in very simple terms, the receptive field (context) is the

area of the input image that the filter covers at any given point of time.

3.2.3.2 Max Pooling Operation

In simple words, the function of pooling is to reduce the size of the feature detector so

that we have fewer parameters in the network architecture. Same as the detection section,

here we are using max pooling operation for our network. Basically from every 2× 2× 2

block of the input feature detector, we select the maximum pixel value and thus obtain a

pooled feature map. A very important point to note here is that both convolution operation

and especially the pooling operation reduce the size of the image which is called as down-

sampling. All the parameters for this operation is given below.

1. Input Size: A 5D tensor with the shape of B1×D1×H1×W1×C1, where B1 is the batch

size, D1 is the depth, H1 is the height, W1 is the width and C1 is the color channel of

the input tensor.

2. Pool Size: D2 ×H2 ×W2, the mask size for pooling.

3. Strides: D3×H3×W3, a tuple of three integers which defines how much the mask has

to leap for each step.

Output Size: A 5D volume which is also called an output image of B4× D4×H4×W4× C4.
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3.2.3.3 Up-sampling Operation

As stated previously, the output of semantic segmentation is not just a class label or some

bounding box parameters, the outputs are complete high-resolution images in which all the

pixels are classified. Thus if we use a regular convolutional network with pooling layers and

dense layers, we will lose the "WHERE" information and only get the "WHAT" information.

This is not what we want. In the case of segmentation, we need both "WHAT" as well as

"WHERE" information which will make segmentation more meaningful.

Hence, there is a need to up-sample the image, i.e. convert a low-resolution image to a

high-resolution image to regain the "WHERE" information.

1. Input Size: A 5D tensor with the shape of B1×D1×H1×W1×C1, where B1 is the batch

size, D1 is the depth, H1 is the height, W1 is the width and C1 is the color channel of

the input tensor.

2. Size: D2×H2×W2, The up-sampling factors for depth, height and width which means

how much it going to up sample the data.

Output Size: A 5D volume which is also called an output image of B3× D3×H3×W3× C3.

3.2.3.4 Transposed Convolution Operation

Transposed convolution, which is sometimes also called as deconvolution, is a technique

to perform up-sampling of an image with learnable parameters. Transposed convolution is

exactly the opposite process of a normal convolution operation which practically means the

input volume which is a lower resolution image converted into a higher resolution image.

We use transposed convolution operations by the same 3D convolution operation just by

increasing the filters and all the parameters remain the same as convolution operation stated

in the earlier section.

3.2.3.5 Activation Function

As we know that activation function helps CNN based model to learn new data by activating

the neuron related to the information given with high weight and it ignores the rest, we have

used ReLU (Rectified Linear Unit) Activation Function in this model. In the detection part

of our research, we also have used ReLU which is a popular function among all activation

function. It provides max value for all positive values and zeroes for all negative values in

computation and it is very simple to avoid complex values. We used the ReLU in all normal

convolution operation as well as in all transposed convolution operation except for the last
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one. The last transposed operation was done with the help of the sigmoid function to get

the main output semantic segmented image.

3.2.4 Model Architecture of Segmentation

Our network is inspired by the U-Net architecture of Olaf Ronneberger et al. [3] who also

made the architecture for biomedical images. The dataset of BRATS 2015 were consists of

274 patients and each of the 4 images’ (T1, T1c, T2 and Flair) original size were 240×240×
155. For the computation efficiency, we resized the data into 32×32×32 and designed the

model to process those large 3D input images.

Like [9], this network architecture uses the skip-architecture that combined the down-

sampling (encoding) path and an up-sampling (decoding) path as shown in Figure 3.13.

Figure 3.13: U-Net Architecture of our Model

This model has the depth of 5 which means it has 5 convolutional blocks for down-sampling

path and each block has two convolutional layers with a filter size of 3× 3, a stride of 1 in

all three directions and ReLU function as the activation function. It increases the number of

feature detectors from 1 to 512. In the case of down-sampling, max pooling with stride 1

in all three dimensions with a pool size of 2×2×2 is used. It is applied to the end of every

block except the last block. The size of the feature detectors decreases from 32×32×32 to

2× 2× 2. In the up-sampling path, each level block starts with an up-sampling layer with

filter size of 2×2×2 which doubles the size of the feature detectors in three dimensions but

decreases the number of feature maps by two, so the size of the feature detectors increases
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from 2×2×2 to 32×32×32. In each up-sampling block, two convolutional layers reduce

the number of the feature detectors of the concatenation of up-sampling (deconvolution)

feature detectors and the feature maps from the encoding path. Different from the original

U-net architecture built by Ronneberger et al. [3], we use zero paddings to keep the output

dimension for all the convolutional layers of both down-sampling and decoding. At last, a

1× 1× 1 convolutional layer is built to reduce the number of the feature detectors to two

that reflect the foreground and background segmentation respectively. No fully connected

layer is used in the network architecture.

The parameters of this network architecture remain the number of convolutional and the

number of deconvolutional blocks which can vary a little bit by changing it. The number

of blocks remains in the range of 4-6 in tuning the network according to the 3D U-net. We

didn’t use any regularization like- L1, L2, Dropout as it doesn’t make any changes in achiev-

ing desired performance metrics. The parameters of this model architecture are given in

Table 3.3.

Table 3.3: Parameters of U-Net Architecture

Parameters Value
Number of convolutional blocks [4, 5, 6]

Number of deconvolutional blocks [4, 5, 6]

3.2.4.1 Training and Optimization

During the training process, the Soft Dice metric described in [10] was used to evaluate our

network model’s performance as a cost function rather than the cross-entropy based or the

quadratic cost function. Soft Dice can be considered as a differentiable form of the original

Dice Similarity Coefficient (DSC) as we get it from subtracting the obtained DSC from 1

[10]. Training deep neural networks requires stochastic gradient-based optimization which

minimizes the cost function concerning its parameters and that is why we implemented the

adaptive moment estimator (Adam) [28] to estimate the parameters. In general, Adam

employs the first and second moments of gradients for updating and correcting the moving

average of the current gradients. The parameters of our Adam optimizer were set as learning

rate = 0.0001 and the maximum number of epochs = 300. All weights were assigned by

normal distribution with a mean of 0 and a standard deviation of 0.01, and all biases were

assigned as 0.

3.2.4.2 Performance Evaluation

The evaluation of our network has been done using a four-fold cross-validation method for

the HGG and LGG combined data, respectively. The performance evaluation was done on
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the complete tumor region of the brains. The segmentations have been evaluated using the

dice soft coefficient, and the accuracy was also calculated. The DSC provides the overlap

measurement between the brain tumor and the segmentation results of our fully automatic

method that is,

DSC =
2T P

F P + 2T P + FN
(3.7)

In this equation, the true positive, false positive and false negative are denoted as TP, FP, FN

measurements, respectively. Another performance metrics, accuracy is used to evaluate the

whole data and that is,

Accurac y =
T P + T N

T P + T N + F P + FN
(3.8)

where, TP = True positive; FP = False positive; TN = True negative; FN = False negative

3.3 Used Dataset

We have used BRATS 2015 dataset in our project where we have 220 HGG or High Grade

Glioma patients’ data and 54 LGG or Low Grade Glioma patients’ data for training. For

testing we have 110 patients’ data. Also we have data for normal brain. All of the MRI

images are of 4 types: Flair, T1, T1c and T2.

1. Flair: Using a long inversion time and a long effective echo time, the signal is made

null from bright cerebrospinal fluid (CSF) of brain in flair image. High CSF is sup-

pressed by long inversion time and the small periventricular lesions are visualized

easily.

2. T1: Images normally is dark in T1 image. T1 image is identified easily by looking for

fluid filled space in body. When an MRI sequence is set to produce T1- weighted image,

the short T1 valued tissue produce highest magnetization and appear the brightest in

image.

3. T1c: In T1-weighted MRI, many tumors show signal enhancement after administra-

tion of contrast media. This type of T1 images are T1c -weighted image.

4. T2: Image contrast is based predominantly on the T2 (transverse) relaxation time

of tissue. Tissue with long T2 relaxation time appears brighter (hyperintense). A

T2-weighted image produces T2 contrast by de-emphasizing the T1-weighted image.

Fluids are bright here.

Figure 3.14 is the visual representation of the 3D brain data that we worked with.

The type of dataset we used are given below.
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Figure 3.14: 3D image of Brain

Figure 3.15: MRI images of HGG. From left to right: Flair, T1, T1c and T2

Figure 3.16: MRI images of LGG. From left to right: Flair, T1, T1c and T2

Figure 3.17: MRI images of normal brain. From left to right: Flair, T1, T1c and T2
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Chapter 4

Result & Discussion

In this chapter, we analyze the key component’s effect on the result & the performance of the

implemented methods and the comparison of the result of other’s methods. We exemplify

the effect of the experiments in the classification of normal brain and brain with tumor as

well as the classification of tumors in two type patients (HGG and LGG). In the experiments

of tumor detection, we maintained the architecture of CNN presented in Table 3.1 to conduct

the classifications correctly. Also, only data of the training dataset are augmented to train

the system model properly. In the section of tumor segmentation experiment, we applied U-

net architecture of semantic segmentation mentioned in Figure 3.13 which was developed

by Olaf Ronneberger et al. [3] to get the feature from downsampling in the first path and

enable precise localization from upsampling in the second path. This separates the tumor

from the brain creating a region around the tumor.

We used validation testing to test the system accuracy after training the data. Validation

test is checked to test our data with a ground truth before we test our system as it is held

back from the training data to estimate model skill.

4.1 Detection

The result of detecting the tumor of our model is quite satisfying compared to our resources.

BRATS 2015 dataset was used and this dataset has a good number of patient cases than other

used paper’s dataset.

The predicted probability of having brain tumor and the type of tumor is given by the detec-

tion model. This result gives the accuracy graph and loss function graph with a percentage.

We trained our data and done validation testing to measure the performance of the tumor

detection system. Also, some key component works as a prominent fact behind the result.



4.1. DETECTION 43

4.1.0.1 Pre-Processing

The effect of our pre-processing method on the classification was evaluated by comparing

with Gaussian Method. We choose this method because it is also utilized in a CNN based

brain tumor classification method. As the pixel’s min value is 0 and max value is 255, we

divided each pixel by 255 to scale them between 0 and 1 which make scaled images for the

CNN.

4.1.0.2 Image Augmentation

Artificial image augmentation is a common procedure in the context of CNN when the

dataset is relatively small. In the system proposed by Havaei et al. [5], they considered its

application, but found to be ineffective. We implemented 4 types of image augmentation.

The effect of the image augmentation by increasing the number of samples using rotations,

horizontal flips, sheering & zooming. The rotation angle was 90 degree. The sheer & zoom

range were 20%. Every change in each image increases the dataset of training and the ac-

curacy is increased by that. Also extended dataset gives increased accuracy in validation

testing and elevates the model’s performance.

4.1.0.3 Deep Architecture

In our convolutional neural network, we used 3× 3 kernels in convolutional layers to get

the advantage of maintaining the same effective receptive field of bigger kernels, while

reducing the number of weights. To evaluate the real impact of this technique on brain

tumor classification, we changed the convolutional layers before each max pooling of the

used architecture. By one layer with larger kernels with the equivalent effective, receptive

field. We change the group of layers 1, 2, 3 and 5, 6, 7 (Table 3.1) by one convolutional

layer. Using this architecture, we experimented to variants for classifications:

1. We maintained 32 feature maps in the first convolutional layer group and 64 in the

second.

2. We increase the capacity of the CNN by using wider layers, namely, 64 feature maps

in the first convolutional layer and 128 in the second.

The result that we got from the convolutional layer is enhanced by this approach. Also the

main purpose of increasing the performance of the model is fulfilled.
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4.1.1 Normal Brain vs. Tumor Affected Brain

We used our neural network architecture to differentiate between normal and tumor af-

fected patient using their MRI images. This architecture then gives a measurement of per-

formance to show the accuracy and loss function for our training and testing dataset.

After the classification we achieved 84.07% max accuracy of trainning data and 74.30%

accuracy in validation testing by epoching the data 60 times. Which means our system can

detect tumor effected and normal brain in training with 84.07% accurately and in validation

testing 74.30% accurately. We used 768 MRI image per epoch and used batch size 32.

Table 4.1: Accuracy & Loss Function value for Normal vs. Tumor affected

Data Type Accuracy Loss Function
Training 84.07% 38.89%

Validation Testing 74.30% 47.79%

4.1.1.1 Accuracy of Normal vs. Tumor affected

Figure 4.1 is obtained from our experiment to indicate the accuracy graph that we got.

Figure 4.1: Accuracy graph for detecting Normal brain vs effected brain

In the figure, we can see that from the beginning of the experiment the training accuracy

was around 0.48 & until 14 epochs it didn’t improve much. But from the 15th epoch, the

training, as well as the validation testing accuracy, was exponentially getting higher. From
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the 30th to the 40th epoch the accuracy of the training was improving & it was between

0.70 to 0.8407. On the other hand, validation testing accuracy was also increased from

the same epoch and achieved max accuracy of 0.7430 at the 38th epoch. That means, by

increasing the number of epochs, the accuracy gradually will increase as in one epoch the

complete dataset is learned for once and the increasing number of epoch will increase the

learning rate. But as we used same data from 60 epochs, the accuracy didn’t improve at all.

So, to decrease the time delay of training we remained 40 epochs for this case.

4.1.1.2 Loss function of Normal vs. Tumor affected

As we used binary cross entropy for our loss function of normal VS tumor affected, we have

achieved Figure 4.2. Binary cross entropy is just a special case of categorical cross entropy.

The equation for binary cross entropy loss is the exact equation for categorical cross entropy

loss with one output node.

Figure 4.2: Loss function graph for detecting Normal brain vs effected brain

In the figure, we can see that the loss rate was higher at the beginning of the experiment

which is 0.74 but it gradually decreased from 30th epoch to 0.37 for training data & 0.47

for the validation testing data. The training graph was exponentially leveling downwards

that makes the learning more efficient as the lower the loss rate the lower the error of the

training and the accuracy is more higher of the training data.
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4.1.2 High Grade Gliomas vs. Low Grade Gliomas

High Grade Gliomas (HGG) and Low Grade Gliomas affected patients can also be detected

by using our neural network architecture for tumor detection. From our dataset, we have

decided to use a portion of data to train our model and we got the accuracy that indicates

our models precision.

For the case, we have used half of the data of the previous classification. 384 & 192 MRI

images are used for each type. Here we used higher epochs to achieve higher accuracy

as our data was limited. It took 60 epochs to achieve 78.12% max accuracy and 47.04%

loss function in training data and 69.25% accuracy and 69.32% loss function in validation

testing.

Table 4.2: Accuracy & Loss Function value for HGG vs. LGG

Data Type Accuracy Loss Function
Training 78.12% 47.04%

Validation Testing 69.25% 69.32%

4.1.2.1 Accuracy of HGG vs. LGG

The accuracy graph produced by our model can be seen in Figure 4.3 where the measure-

ment of the correct predicted probability is given.

Figure 4.3: Accuracy graph for HGG vs. LGG
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The starting of the experiment of the training accuracy was only 0.46 & until 9 epochs, there

was no improvement which can be shown by the figure clearly. But from 10th epoch the

training as well as the validation testing accuracy was getting higher. At 10th epoch we

achieved the max accuracy of 0.6925 for validation testing. After 10th epoch, we couldn’t

get any higher value. It was always between 0.58 to 0.65 by gradually increasing & de-

creasing. For training data the accuracy was exponentially increasing from 10th epoch &

the accuracy was 0.78 after 60th epoch.

4.1.2.2 Loss function of HGG vs. LGG

Loss or error function of our system is measured by using binary cross entropy. For HGG vs

LGG loss function, we have obtained Figure 4.4.

Figure 4.4: Loss Function graph for the HGG vs. LGG

Binary cross entropy is applied when there is binary classifier for prediction. For detecting

HGG and LGG tumor, we have used the same equation that is used for detecting normal vs

tumor affected which is the exact equation for categorical cross entropy loss with one output

node. In this graph, at the start of the classification, the loss rate was 0.70 but gradually

by leveling up the epochs, the validation testing loss rate was maintained among 0.75 to

0.80 which was not decreasing at all. But the training graph was exponentially leveling

downwards and at the 60th epoch it is 0.4 that makes the learning more efficient as the

lower the loss function the higher the accuracy.
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4.1.3 Comparison of Different Methods of Tumor Detection

In the comparison of accuracy, we were in the middle with the contrast of other methods in

classification of normal vs. tumor affected images. Our detection method gives the accuracy

of a proper percentage. It can detect the tumor with the accuracy of 74.30%. If we compare

our work with the paper of Pauline John et al. [16] then we can notice that his paper got

70% of accuracy on tumor detection which is lesser then ours. On the other hand [21] have

78% of accuracy which is only 4% greater then our architecture.

In Havaei et al. [5] & Pereira et al. [4], they have accuracy of 83% and 88% accuracy

respectively. This accuracy was not impossible for us to achieve as we worked with only

4GB GPU on the same dataset where they work with 12GB. We know, more GPU capacity

gives more weight to the network which increases the accuracy and also the time delay.

Table 4.3: Comparison of methods in respect of accuracy

Methods Accuracy
Proposed Method [table 3.1] 74.30%
Mohammad Havaei et al. [5] 83%

Sergio Pereira et al. [4] 88%
Stefan Bauer et al. [21] 78%
Pauline John et al. [16] 70%

Our accuracy can gradually increase if we increase the number of training & testing data so

that, neural network will learn about the pattern of the images & differentiate them more

successfully.

Figure 4.5: Chart of comparison between different method of tumor detection
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4.2 Segmentation

Our segmentation model using U-Net architecture gives us a very good accuracy for tumor

area localization. This accuracy has not been achieved by any paper with the resources that

we have used. It searches the image pixel by pixel to get the tumor value compare with

the ground truth. Whichever pixel matches with the ground truth that is counted. After

counting 274 patients images, an accuracy is found and we get the tumor segmented area.

4.2.1 Segmentation Result for BRATS 2015

We have applied our architecture of segmentation on the dataset BRATS 2015. This dataset

have 4 types of image for each patient. Flair, T1, T1c and T2.

Tumors of T1 and T1c type images are most clearly visible among them. This 2 types of

image is segmented and the prediction of our model gives accurate result as compared to

ground truth.

T1 images are normally dark image but can easily identified as the body of this image is

filled with fluid. The short T1 produce highest magnetization which appears the brightest

in images.

Figure 4.6: Segmentation for T1 MRI

In Figure 4.6, the input image is processed in our model and a segmented predicted image

is found. Ground truth is the level image for training the model to give accurate prediction.

Our prediction matches the ground truth value very closely. By training more and more this

prediction can be more accurate.

In T1-weighted MRI, many tumors show signal enhancement after administration of con-

trast media. This type of T1 images are T1c -weighted image. It is similar with T1 image

and the tumor is more visible. For this reason, this type of image is more accurate for our

experiment.
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Figure 4.7: Segmentation for T1c MRI

In Figure 4.7, a predicted image is found from T1c type input image by applying our seg-

mentation method. This procedure only highlights the tumor area and all the other pixels

are colored as background. This image is quite similar with the ground truth. Which means,

the predicted tumor image is accurately segmented.

4.2.2 Performance of the Model for Tumor segmentation

We used our U-Net architecture to segment the tumor image. This segmentation is done by

considering the image pixel by pixel with voxel of a 3D image. When the pixel of the image

has same value, after segmentation that number is counted. When all the pixel is done then

the number of predicted image is compared with the ground truth. If the number matches

correctly with the ground truth then the accuracy is 100%. Otherwise the loss function is

increased.

The loss function is measured from Dice Soft Loss(DSL). This function counts the unmatched

pixels and give the loss or error function value. The equation for loss function is,

DSL = 1− DSC (4.1)

The equation is calculated by subtracting dice soft coefficient from whole probability. Dice

soft coefficient is needed for accuracy measurement.

From our model, we achieved 93.08% accuracy on training data and 92.09% accuracy on

validation testing. The loss function’s value is also low with 19% in training data and 21%

validation testing data.

Table 4.4: Accuracy & Loss Function value for Tumor Segmentation

Data Type Accuracy Loss Function
Training 93.08% 19%

Validation Testing 92.09% 21%
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4.2.2.1 Accuracy for Tumor Segmentation

The accuracy curve of the segmentation model is given in Figure 4.8 which shows the accu-

racy for training and validation testing data.

Figure 4.8: Accuracy graph for Tumor Segmentation Model

From the very beginning of the graph, the accuracy have been risen and with the increasing

number of epoch, the accuracy increases very slightly. On 1st epoch, the accuracy was 0.9

which is an excellent value. Moving epoch by epoch, the accuracy increases for both train-

ing and validation testing data. After our final epoch which is 300, the accuracy for training

data is 0.93 and for validation testing data is 0.92.

4.2.2.2 Loss Function for Tumor Segmentation

Figure 4.9 is the loss function of our model which is also giving marvelous result after

increasing epoch.

The result, that we obtained from the segmentation loss function is measurement by dice

soft loss. At the 1st epoch, the loss value was high for both data which was 0.92. After

increasing number of epoch, the loss value is decreased. The gradually downwards curves

shows the efficiency of our model. Lastly at the 300th epoch the loss function’s value for

training data is 0.19 and for validation testing is 0.21. If we increase the epoch number

further, then the value for loss function will be decreased.
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Figure 4.9: Loss Function graph for Tumor Segmentation Model

4.2.3 Comparison of Different Methods of Tumor Segmentation

The novel work for our thesis paper is done in the segmentation part. We have created a

model that has a good accuracy and compared to some paper, the result is excellent. We

have compared our work accuracy with four other papers who where said to be best papers.

Sergio Pereira et al. [4] and Mohammad Havaei et al. [5] has achieved the DSC value of

0.78 but our DSC value is 0.79 which is a good accuracy than these papers.

Konstantinos Kamnitsas et al. [29] has DSC value of 0.85 which is good. They have used 2D

dataset for their proposed method. But we have used 3D dataset in our model, counting the

image of voxels for segmentation as we have used 4GB GPU. We can’t have the whole sized

image as the calculation delay would be high. That’s why we re-sized our image dataset for

the efficiency.

Table 4.5: Comparison of different methods in respect of DSC

Method Data DSC
Proposed Method [Figure 3.13] BRATS 2015 0.79

Sergio Pereira et al. [4] BRATS 2015 0.78
Mohammad Havaei et al. [5] BRATS 2015 0.78

Konstantinos Kamnitsas et al. [29] BRATS 2015 0.85

[12] has used TensorFlow and TensorLayer library but we have used Keras library in our

model. Our image resolution was smaller than everyone as we used 3D image. For that

reason, [9] took 22 hours 5 minutes for training the data others took above one day but we
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took only 12 hours 30minutes.

Figure 4.10: Chart of comparison between different method of tumor segmentation

Our model gives the most time optimizing result than most of others. Prediction giving

delay is considered as the efficiency measurement scale.

In our proposed method, we have given the prediction in less than 1 sec. It is the lowest

time consuming model. Sergio Pereira et al. [4] and Mohammad Havaei et al. [5] have

given the prediction in 8 min and 25sec ∼ 3min respectively which is not as good as our

model. Even the lowest time of Hao Dong et al. [12] is 2 ∼ 3sec which is also higher than

our time delay.

Table 4.6: Comparison of different methods in respect of time for prediction

Method Data Time
Proposed Method [Figure 3.13] BRATS 2015 less than 1sec

Hao Dong et al. [12] BRATS 2015 2∼ 3sec
Sergio Pereira et al. [4] BRATS 2015 8min

Mohammad Havaei et al. [5] BRATS 2015 25sec ∼ 3min

Our result can be increased in accuracy and efficiency, if we have used 12GB GPU like [5], [4]
and [12] on same dataset. Still the efficiency measurement of our model is highest.
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Chapter 5

Future Work

We tried to implement a novel architecture to detect and segment brain tumor in an easy

& efficient way. We have classified the data between normal brain & brain with gliomas

(tumors) as well as between high grade & low grade tumor patients using our model Con-

volutional Neural Network architecture in detection part. We also segmented all 4 kinds of

MRI images of both HGG and LGG patients in BRATS 2015 dataset and evaluated our results

compared with ground truth images. But there are still some limitations of the current work

both in detection and segmentation model.

5.1 Limitations

The classification of the brain, based on tumor grade, is not precise enough. So we should

have used more independent data consisted of different kinds of MRI images of many more

various patients. It helps the model to learn more about the tumors as well as their pre-

diction of the detection of tumor areas. The method we built for semantic segmentation

has been evaluated using a cross-validation scheme, which can provide an unbiased predic-

tor. But by running our model on a separate and independent testing dataset may produce

a more effective evaluation. After that, there are several parameters in our architecture

which should be carefully tuned. In particular, regularization like L1, L2 or dropout should

be counted as a parameter, though [12] used all these regularizations but didn’t get any

performance upgrade. This may be a fact that an effective image distortion should have

been used in our network which was applied during [12] model, and it is difficult to overfit

a network with a large amount of training data.

Moreover, our current framework is less successful in term of dice coefficient score which

is the performance metrics of all the method which have used BRATS datasets than state-

of-the-art [29]. But [29] and other methods have used higher GPU than us and so, in the
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future, we will like to evaluate our model in higher GPU than 4 GB in which we are currently

executing our work. Less GPU gives less computational help and the model weight that we

desire for our network can’t be obtained in the current situation. Though we implemented

our model in a much lesser GPU than other, we got faster performance in training as well

as in predicting tumor regions.

5.2 Possible Future Approaches

To develop our network architecture’s performance, we can tune in the hyperparameters of

our fully convolutional neural network to examine which parameter is affecting the metrics.

Hyperparameters in a CNN based network are sensitive to each other. As all the layers are

connected in a U-shaped manner, the tuning should be the same in both the encoding and

decoding section.

We can also improve the model by adding or removing more depth from the network which

is the number of blocks on both sides of the network. Adding new layers not only makes

the network more complicated but also it makes it heavier in all sorts of computational

complexities. It will take more time than usual which will decrease the performance of the

model in terms of time-consumption. But if we remove layers from the network than the

parameters mentions in the network model will surely reduce the performance metrics as

well as increase the losses per epoch. As for increasing epochs, the validation accuracy and

dice soft coefficient don’t improve at all. It will only increase the time consumption of the

proposed architecture.

From the above discussion, we can see that adding layers will only affect the performance

of the model and so, we should tune the hyperparameters of the neural network architec-

ture to get better DSC. If convert the environment from 4 GB to 12 GB the computation

time will reduce gradually and for initializing the model with a better weight of the model

architecture, the training will be smoother than ever and give better metrics and reduce the

loss per epoch both in training and validation testing.

There is one more way to make the proposed model more efficient which is by feeding the

network with more independent data rather than the BRATS 2015 dataset. This introduces

the model with a more variable environment and many other variables to deal within neu-

rons. It will make the data more competent and well organized for real-life experiments

where computer diagnosis is much needed than manual ones. As the manual segmentation

is tedious, automatic segmentation with a mostly accurate method like our network will be

handy for the patients.

Finally, in the future, we want to know more models that have been used in biomedics and

have an accuracy higher in that fields which can be used in brain tumor segmentation as

biomedical images are quite similar. This study will help us to improve the architecture of
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our network and diagnosis will be better than ever. We also employ model on survival rate

from the MRI images with their statistical survey which can help a network predict the level

of threat of the tumors as well as foresee the growth of the tumor and its nature.
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Chapter 6

Conclusion

For the time being brain tumor is one of the focal perilous problems in this world. Ra-

diotherapy, chemotherapy, advanced imaging, and surgical procedure are preferred for aid

but still, certain cases of a malignant tumor are considered untreatable. The segmentation

of MRI scans can proficiently supervise tumor treatment. Operating by the humans, the

manual segmentation is considered to be time consuming and labor-intensive. Hence, for a

multifold, distributional and longitudinal clinical trial, an effective, objective and propagat-

ing solution is egregiously needed.

Deep learning had a propensity for delivering an applicable and functional result for the

mentioned vocation. Formed by several convolutional layers, the convolutional Neural Net-

work allows the functioning of a hierarchy of features from the MRI to constitute a dynamic

and cogent model. In this paper, we approached a fully automatic brain tumor detection

and segmentation method using the 3D U-Net based deep convolution network. By using

our CNN architecture, we can classify between an abnormal and normal brain and also

differentiate between high-grade gliomas and low-grade gliomas and using the 3D U-Net

architecture we can segment the MRI images and the network is trained to distinguish the

high-grade and low-grade gliomas.

Our result is mainly divided into two primary fragments. Detection of the tumors have

been done by prosecuting our approached CNN architecture where it has achieved 84.07%

max accuracy. Classification between low-grade gliomas and high-grade gliomas, where

the network has scored 69.25% accuracy. Later by promulgating our U-Net network for

segmentation, we had set the accuracy to 93% and dice score to 79%. Along with the de-

tection and segmentation we have barred down the training time by a large scale. Thus

the computation time has been decremented to a handsome extent. The proposed method

can inaugurate a patient concentrate brain tumor segmentation model without manual in-

ference and this empirical management can be exercised into the diagnosis, treatment, and

surgical planning and patient welfare.
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Appendix A

3D Data View

1 import ma tp lo t l i b . pyp lo t as p l t

2 import os

3 from medpy . io import load

4

5

6 image_data , image_header = load ( ’D:/ Thes i s /BRATS2015_Training/HGG/
brats_2013_pat0001_1/VSD . Brain . XX .O. MR_T1c.54514/VSD . Brain . XX .O. MR_T1c

.54514.mha ’ )

7 t1 = image_data

8 t1 = t1 . T

9

10

11 def remove_keymap_confl icts ( new_keys_set ) :

12 f o r prop in p l t . rcParams :

13 i f prop . s t a r t s w i t h ( ’ keymap . ’ ) :

14 keys = p l t . rcParams [ prop ]
15 remove_ l i s t = s e t ( keys ) & new_keys_set

16 f o r key in remove_ l i s t :

17 keys . remove ( key )

18

19

20 def m u l t i _ s l i c e _ v i e w e r ( volume ) :

21 remove_keymap_confl icts ({ ’ j ’ , ’ k ’ })
22 f i g , ax = p l t . subp lo t s ()

23 ax . volume = volume

24 ax . index = volume . shape [0] // 2

25 ax . imshow( volume [ ax . index ] , cmap= ’ gray ’ )

26 f i g . canvas . mpl_connect ( ’ key_press_event ’ , process_key )

27

28

29 def process_key ( event ) :

30 f i g = event . canvas . f i g u r e
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31 ax = f i g . axes [0]
32 i f event . key == ’ j ’ :

33 p r e v i o u s _ s l i c e ( ax )

34 e l i f event . key == ’ k ’ :

35 n e x t _ s l i c e ( ax )

36 f i g . canvas . draw ()

37

38

39 def p r e v i o u s _ s l i c e ( ax ) :

40 volume = ax . volume

41 ax . index = ( ax . index − 1) % volume . shape [0] # wrap around using %

42 ax . images [0 ] . s e t _ a r r a y ( volume [ ax . index ] )
43

44

45 def n e x t _ s l i c e ( ax ) :

46 volume = ax . volume

47 ax . index = ( ax . index + 1) % volume . shape [0]
48 ax . images [0 ] . s e t _ a r r a y ( volume [ ax . index ] )
49

50

51 m u l t i _ s l i c e _ v i e w e r ( t1 )

52

53

54 import k3d

55 import numpy as np

56

57

58 fam = np . ar ray ( image_data )

59 p lo t = k3d . p l o t ()

60 i s o s u r f a c e = k3d . marching_cubes ( fam , l e v e l=5)

61 p lo t += i s o s u r f a c e

62 p lo t . d i s p l a y ()
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Appendix B

Code for Tumor Detection

1 from keras . models import Sequent ia l

2 from keras . l a y e r s import Convolution2D

3 from keras . l a y e r s import MaxPooling2D

4 from keras . l a y e r s import F l a t t e n

5 from keras . l a y e r s import Dense

6 import ma tp lo t l i b . pyp lo t as p l t

7

8

9 c l a s s i f i e r = Sequent ia l ( )

10

11 c l a s s i f i e r . add( Convolution2D (32 , 3 , 3 , input_shape= (64 , 64 , 3) , a c t i v a t i o n = ’

r e l u ’ ) )

12 c l a s s i f i e r . add( Convolution2D (32 , 3 , 3 , a c t i v a t i o n = ’ r e lu ’ ) )

13 c l a s s i f i e r . add( Convolution2D (32 , 3 , 3 , a c t i v a t i o n = ’ r e lu ’ ) )

14 c l a s s i f i e r . add( MaxPooling2D ( poo l_ s i ze = (2 , 2) ) )

15

16

17 c l a s s i f i e r . add( Convolution2D (64 , 3 , 3 , a c t i v a t i o n = ’ r e lu ’ ) )

18 c l a s s i f i e r . add( Convolution2D (64 , 3 , 3 , a c t i v a t i o n = ’ r e lu ’ ) )

19 c l a s s i f i e r . add( Convolution2D (64 , 3 , 3 , a c t i v a t i o n = ’ r e lu ’ ) )

20 c l a s s i f i e r . add( MaxPooling2D ( poo l_ s i ze = (2 , 2) ) )

21

22

23 c l a s s i f i e r . add( F l a t t e n () )

24

25

26 c l a s s i f i e r . add( Dense ( output_dim = 128 , a c t i v a t i o n = ’ r e lu ’ ) )

27 c l a s s i f i e r . add( Dense ( output_dim = 128 , a c t i v a t i o n = ’ r e lu ’ ) )

28 c l a s s i f i e r . add( Dense ( output_dim = 1 , a c t i v a t i o n = ’ s igmoid ’ ) )

29

30

31 c l a s s i f i e r . compile ( opt imizer = ’ adam ’ , l o s s = ’ b ina ry_c ros sen t ropy ’ , met r i c s =
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[ ’ accuracy ’ ] )
32

33

34 from keras . p reproces s ing . image import ImageDataGenerator

35

36 t ra in_datagen = ImageDataGenerator ( r e s c a l e = 1./255 ,

37 shear_range = 0.2 ,

38 zoom_range = 0.2 ,

39 h o r i z o n t a l _ f l i p = True )

40

41

42 t e s t_da tagen = ImageDataGenerator ( r e s c a l e = 1./255)

43

44 t r a i n i n g _ s e t = t ra in_datagen . f low_f rom_di rec tory ( ’ da ta se t /BRATS2015_Training ’ ,

45 t a r g e t _ s i z e = (64 , 64) ,

46 ba t ch_s i ze = 32 ,

47 class_mode = ’ b inary ’ )

48

49 t e s t _ s e t = t e s t_da tagen . f low_f rom_di rec tory ( ’ da ta se t /Tes t ing ’ ,

50 t a r g e t _ s i z e = (64 , 64) ,

51 ba t ch_s i ze = 32 ,

52 class_mode = ’ b inary ’ )

53

54

55 from sk lea rn . c r o s s _ v a l i d a t i o n import StandardScaler

56 sc_X = StandardScaler ()

57 t r a i n i n g _ s e t = sc_X . f i t _ t r a n s f o r m ( t r a i n i n g _ s e t )

58 t e s t _ s e t = sc_X . f i t _ t r a n s f o r m ( t e s t _ s e t )

59

60

61 h i s t o r y = c l a s s i f i e r . f i t _ g e n e r a t o r ( t r a i n i n g _ s e t ,

62 samples_per_epoch = 1096 ,

63 nb_epoch = 25 ,

64 va l i da t i on_ da ta = t e s t _ s e t ,

65 nb_val_samples = 274)

66

67

68 c l a s s i f i e r . summery ()

69

70

71 # l i s t a l l data in h i s t o r y

72 p r i n t ( h i s t o r y . h i s t o r y . keys () )

73 # summarize h i s t o r y f o r accuracy

74 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ acc ’ ] )
75 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ va l_acc ’ ] )
76 p l t . t i t l e ( ’ model accuracy ’ )

77 p l t . y l a b e l ( ’ accuracy ’ )
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78 p l t . x l a b e l ( ’ epoch ’ )

79 p l t . legend ( [ ’ t r a i n ’ , ’ t e s t ’ ] , l o c= ’ upper l e f t ’ )

80 p l t . show ()

81

82

83 # summarize h i s t o r y f o r l o s s

84 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ l o s s ’ ] )
85 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ v a l _ l o s s ’ ] )
86 p l t . t i t l e ( ’ model l o s s func t ion ’ )

87 p l t . y l a b e l ( ’ l o s s r a t e ’ )

88 p l t . x l a b e l ( ’ epoch ’ )

89 p l t . legend ( [ ’ t r a i n ’ , ’ t e s t ’ ] , l o c= ’ upper l e f t ’ )

90 p l t . show ()
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Appendix C

Code for Tumor Segmentation

1 import numpy as np

2 import pandas as pd

3 import ma tp lo t l i b . pyp lo t as p l t

4 import skimage . io as io

5 import skimage . transform as t rans

6 import random as r

7 from keras . op t imize r s import Adam

8

9 import glob

10

11 from keras . models import Input , Model

12 from keras . l a y e r s import Conv3D , Concatenate , MaxPooling3D , Reshape

13 from keras . l a y e r s import UpSampling3D , Ac t i va t ion , Permute

14

15 import keras . backend as K

16

17

18 def c rea te_da ta ( src , mask , l a b e l=False , r e s i z e=(128 ,128 ,128) ) :

19 f i l e s = glob . glob ( s r c + mask , r e c u r s i v e=True )

20 imgs = []
21 f o r f i l e in f i l e s :

22 img = i o . imread ( f i l e , p lug in= ’ s i m p l e i t k ’ )

23 i f l a b e l :

24 img [ img > 0] = 1

25 img = img . as type ( ’ f l oa t32 ’ )

26 e l s e :

27 img = ( img−img . mean() ) / img . s td ()

28 img = t r ans . r e s i z e ( img , r e s i z e , mode= ’ cons tant ’ )

29 imgs . append ( img)

30 name = ’ Y_ t ra in ’ i f l a b e l e l s e ’ X_ t ra in ’

31 np . save (name , np . ar ray ( imgs ) [ . . . , np . newaxis ] . as type ( ’ f l oa t32 ’ ) )

32 p r i n t ( ’ Saved ’ , len ( f i l e s ) , ’ to ’ , name)
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33

34

35 def l eve l_b lock_3d (k , dim , depth , f a c to r , a c t i ) :

36 i f depth > 0:

37 n = Conv3D(dim , 3 , a c t i v a t i o n=ac t i , padding= ’ same ’ ) (k )

38 m = Conv3D(dim , 3 , a c t i v a t i o n=ac t i , padding= ’ same ’ ) (n)

39 m = MaxPooling3D () (n)

40 m = l eve l_b lock_3d (m, i n t ( f a c t o r ∗dim) , depth−1, f a c to r , a c t i )

41 m = UpSampling3D () (m)

42 m = Concatenate ( a x i s=4)( [n , m] )
43 m = Conv3D(dim , 3 , a c t i v a t i o n=ac t i , padding= ’ same ’ ) (m)

44 re turn Conv3D(dim , 3 , a c t i v a t i o n=ac t i , padding= ’ same ’ ) (m)

45

46

47 def UNet_3D( img_shape , n_out=1, dim=64, depth=4, f a c t o r=2, a c t i= ’ e lu ’ ) :

48 i = Input ( shape=img_shape )

49 o = l eve l_b lock_3d ( i , dim , depth , f a c to r , a c t i )

50 o = Conv3D( n_out , 1 , a c t i v a t i o n= ’ s igmoid ’ ) (o)

51 re turn Model ( input s=i , outputs=o)

52

53

54 def f1_score ( y_true , y_pred ) :

55 y_ t rue_ f = K . f l a t t e n ( y_true )

56 y_pred_f = K . f l a t t e n ( y_pred )

57 i n t e r s e c t i o n = K . sum( y_ t rue_ f ∗ y_pred_f )

58 re turn (2 . ∗ i n t e r s e c t i o n + 1 . ) / (K . sum( y_ t rue_ f ) + K . sum( y_pred_f ) + 1 . )

59

60 def f 1 _ l o s s ( y_true , y_pred ) :

61 re turn 1− f1_score ( y_true , y_pred )

62

63

64 c rea te_da ta ( ’ BRATS2015_Training/HGG/ ’ , ’ /∗∗/∗T1c ∗ .mha ’ , l a b e l=False , r e s i z e

=(32 ,32 ,32) )

65 c rea te_da ta ( ’ BRATS2015_Training/HGG/ ’ , ’ /∗∗/∗OT∗ .mha ’ , l a b e l=True , r e s i z e

=(32 ,32 ,32) )

66

67

68 x = np . load ( ’ / content / gdr ive /My Drive /X_t ra in . npy ’ )

69 p r i n t ( ’ x : ’ , x . shape )

70 y = np . load ( ’ / content / gdr ive /My Drive / Y_t ra in . npy ’ )

71 p r i n t ( ’ y : ’ , y . shape )

72

73

74 import random as r

75 i = i n t ( r . random () ∗ x . shape [0 ])
76 p l t . f i g u r e ( f i g s i z e =(10 ,10) )

77 p l t . subp lo t (121)
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78 p l t . imshow( x [ i , i n t ( x . shape [1]/2) , : , : , 0])
79 p l t . subp lo t (122)

80 p l t . imshow( y [ i , i n t ( y . shape [1]/2) , : , : , 0])
81 p l t . show ()

82

83

84 model = UNet_3D( x . shape [1 : ] , dim=32, f a c t o r=2)

85 model . compile ( opt imizer=Adam( l r =0.0001) , l o s s=f 1_ lo s s , met r i c s=[ ’ accuracy ’ ] )
86

87

88 from sk lea rn . c r o s s _ v a l i d a t i o n import t r a i n _ t e s t _ s p l i t

89 X_tra in , X_val id , Y_tra in , Y_va l id = t r a i n _ t e s t _ s p l i t (x , y , t e s t _ s i z e = 0.2 ,

random_state = 0)

90

91

92 from keras . p reproces s ing . image import ImageDataGenerator

93

94

95 datagen = ImageDataGenerator (

96 ro ta t ion_range=20,

97 width_sh i f t _ range=0.1 ,

98 h e i g h t _ s h i f t _ r a n g e=0.1 ,

99 h o r i z o n t a l _ f l i p=True ,

100 v e r t i c a l _ f l i p=True ,

101 shear_range=0.2 ,

102 zoom_range=0.1 ,

103 br igh tness_range =[0.8 ,1 .2])
104

105

106 datagen . f i t ( X_ t ra in )

107

108

109 h i s t o r y = model . f i t _ g e n e r a t o r ( datagen . f low ( X_tra in , Y_tra in , ba t ch_s i ze=8) ,

va l i da t i on_ da ta=(X_val id , Y_va l id ) , s teps_per_epoch=len ( X_ t ra in ) /8 , epochs

=300)

110 model . save_weights ( ’ demo_weights . h5 ’ )

111 pred = model . p r e d i c t ( x [ : 60 ] )
112

113

114 import random as r

115 num = i n t ( x . shape [1]/2)

116 f o r n in range (3) :

117 i = i n t ( r . random () ∗ pred . shape [0 ])
118 p l t . f i g u r e ( f i g s i z e =(15 ,10) )

119

120 p l t . subp lo t (131)

121 p l t . t i t l e ( ’ Input ’ )
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122 p l t . imshow( x [ i , num, : , : , 0])
123

124 p l t . subp lo t (132)

125 p l t . t i t l e ( ’ Ground Truth ’ )

126 p l t . imshow( y [ i , num, : , : , 0])
127

128 p l t . subp lo t (133)

129 p l t . t i t l e ( ’ P r e d i c t i o n ’ )

130 p l t . imshow( pred [ i , num, : , : , 0])
131

132 p l t . show ()

133

134

135 model . summary ()

136

137

138 # l i s t a l l data in h i s t o r y

139 p r i n t ( h i s t o r y . h i s t o r y . keys () )

140 # summarize h i s t o r y f o r accuracy

141 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ acc ’ ] )
142 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ va l_acc ’ ] )
143 p l t . t i t l e ( ’ Segmentation accuracy ’ )

144 p l t . y l a b e l ( ’ accuracy ’ )

145 p l t . x l a b e l ( ’ epoch ’ )

146 p l t . legend ( [ ’ t r a i n ’ , ’ v a l i d t e s t ’ ] , l o c= ’ lower r i g h t ’ )

147 p l t . show ()

148

149

150 # summarize h i s t o r y f o r l o s s
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